越来越多的组织将机器学习解决方案纳入其日常运营和长期战略,因此,部署和维护机器学习系统的有效标准变得至关重要。MLOps (机器学习运维的缩写)应运而生。它涵盖了一系列实践,将机器学习建模、软件工程和数据工程融合到整个机器学习系统生命周期中。
如果您热衷于在 2025 年进军 MLOps 领域,但又不确定从哪里开始,本文将重点介绍并汇总其基本要素和最新趋势,这两者对于了解当前的 MLOps 形势都至关重要。
了解 MLOps
MLOps 的重点是简化将经过训练的机器学习模型(例如图像分类器、销售预测器、降雨量预报模型等)从开发环境引入实际生产环境的过程。MLOps 可以看作是一个由以下几个阶段组成的生命周期:
- 数据收集和预处理
- 模型训练
- 模型部署
- 系统监控和治理
MLOps 集成了一套成熟的软件开发实践:DevOps 的原则。因此,它确保机器学习模型具有可重复性、可扩展性,并且更易于维护。
步骤 1:先决条件
在深入研究 MLOps 之前,请务必熟悉构成该领域基础的先决概念和学科。这些包括编程、机器学习基础知识和 DevOps 原则。
- Python 编程语言和 Bash 脚本:如今,它们是软件开发的两大必备技能,其重要性也延伸到了常见的 DevOps 和 MLOps 流程,例如自动化工作流程、管理基础架构以及定义 MLOps 工具和组件之间的交互。点击