AtCoder Beginner Contest 248 E - K-colinear Line「计算几何判三点共线」

E - K-colinear Line

题目描述:

n个点,问存在多少条不同的直线,使的直线上的点的数量大于等于x

思路:

两点确定一条直线,所以我们直接枚举每两个点,得到一个直线,再枚举剩下的所有的点,看有多少个点在线上,如果数量大于等于k,就更新答案,个人感觉这个题主要考的是直线的判重,这里因为数据量很小,我们直接用vector存下来每次符合条件的点的所有下标,然后排个序,扔到set里面去重,最后只需要输出set的大小即可

#include <bits/stdc++.h>
using namespace std;

#define endl '\n'
#define inf 0x3f3f3f3f
#define mod7 1000000007
#define mod9 998244353
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define debug(a) cout << "Debuging...|" << #a << ": " << a << "\n";
typedef long long ll;
#define int long long

typedef pair <int,int> pii;

#define MAX 300000 + 50
int n, m, k, x, y;
vector<pii>v;
set<vector<int>>se;

bool judge(int i, int j, int k){
    int a = v[k].second - v[i].second;
    int b = v[k].first - v[i].first;
    int c = v[j].second - v[i].second;
    int d = v[j].first - v[i].first;
    if(a * d == b * c)return true;
    return false;
}

void work(){
    cin >> n >> k;
    for(int i = 1; i <= n; ++i){
        cin >> x >> y;
        v.push_back(m_p(x, y));
    }
    if(k == 1){
        cout << "Infinity\n";
        return;
    }
    for(int i = 0; i < n; ++i){
        for(int j = i + 1; j < n; ++j){
            int mx = min(v[i].first, v[j].first);
            int my = min(v[i].second, v[j].second);
            int num = 2;
            vector<int>vv;
            vv.push_back(i);vv.push_back(j);
            for(int k = 0; k < n; ++k){
                if(k == i || k == j)continue;
                if(judge(vv[(int)vv.size() - 2], vv[(int)vv.size() - 1], k)){
                    ++num;
                    vv.push_back(k);
                    mx = min(mx, v[k].first);
                    my = min(my, v[k].second);
                }
            }
            if(num >= k){                sort(vv.begin(), vv.end());
                se.insert(vv);
            }
        }
    }
    cout << se.size() << endl;
}


signed main(){
    io;
    work();
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值