AtCoder Beginner Contest 210 E - Ring MST「Kruskal」「加速合并」「同余与gcd」

AtCoder Beginner Contest 210

E - Ring MST

题目描述:

n个点,m种操作,每种操作都有一个a, c,即你可以选择任意一个点x(x+a)%n连一条长度为c的边,每种操作都可以进行任意次,顺序也可以任意,问把n个点连成一个连通图的最小权值是多少

思路:

这个题巨有意思!
显然是一个最小生成树的题,但是克鲁斯卡尔的复杂度是O(mlongm),这里的m指的是边的数量,也就是点的数量减1,即n-1,这个题的n<=1e9,显然不能做,所以我们考加速克鲁斯卡尔的合并过程,克鲁斯卡尔的过程无非是对边排序,然后判断是否在一个连通块,然后连边,而题这里我们把m种操作看成m种边,每种边可能会连很多个不同的点,也就会导致合并巨慢。

我们考虑每种连边方式能连接的边的数量是:使用该边i后的连通块的数量 - 使用该边i前的连通块的数量。

那问题又来了,怎么计算使用该边后的连通块的数量?

官方题解写的非常非常好,难得我能看懂一次官方题解

如果uv可以通过前t条边相连,也就是存在一组解 ( k 1 , k 2 . . . k t ) (k_1,k_2...k_t) (k1,k2...kt) 满足: v ≡ u + k 1 A 1 + k 2 A 2 + . . . + k t A t ( m o d   n ) v ≡ u + k_1A_1+k_2A_2+...+k_tA_t(mod\space n) vu+k1A1+k2A2+...+ktAt(mod n)

也就是存在一组解 ( k 0 , k 1 , k 2 . . . k t ) (k_0,k_1,k_2...k_t) (k0,k1,k2...kt),满足:

v = u + k 0 ∗ n + k 1 A 1 + k 2 A 2 + . . . + k t A t v = u + k_0*n + k_1A_1+k_2A_2+...+k_tA_t v=u+k0n+k1A1+k2A2+...+ktAt

我们令 d = g c d ( n , A 1 , A 2 . . . A t ) d = gcd(n,A_1,A_2...A_t) d=gcd(n,A1,A2...At)

v = u + k ∗ d v = u + k*d v=u+kd

v ≡ u ( m o d   d ) v ≡ u (mod\space d) vu(mod d)

也就是存在d个连通块,不连通的这d个就是0d - 1d个点分别所在的连通块

所以我们可以对边的权值从小到大排序,然后用一个变量记录当前剩余的连通块的数量,再求gcd(n, a1, a2...ai),二者相减就得到该边用的次数,乘上权值就行

#include <bits/stdc++.h>
using namespace std;

#define endl '\n'
#define inf 0x3f3f3f3f
#define mod7 1000000007
#define mod9 998244353
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define debug(a) cout << "Debuging...|" << #a << ": " << a << "\n";
typedef long long ll;
#define int long long
typedef pair <int,int> pii;

#define MAX 300000 + 50
int n, m, k, x;
struct ran{
    int a, c;
    bool operator < (const ran &x)const{
        return c < x.c;
    }
}tr[MAX];

int gcd(int a, int b){
    if(!b)return a;
    else return gcd(b, a % b);
}

void work(){
    cin >> n >> m;
    for(int i = 1; i <= m; ++i)cin >> tr[i].a >> tr[i].c;
    sort(tr + 1, tr + 1 + m);
    ll ans = 0;
    int sum = n;
    int gg = n;
    for(int i = 1; i <= m; ++i){
        gg = gcd(gg, tr[i].a);
        ans += (sum - gg) * tr[i].c;
        sum = gg;
        if(gg == 1)break;
    }
    if(gg == 1)cout << ans << endl;
    else cout << -1 << endl;
}

signed main(){
    io;
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值