3193. 统计逆序对的数目
题目描述:
给定一个长度为n的二维数组 r e re re,其中 r e [ i ] = [ i d i , c n t i ] re[i] = [id_i, cnt_i] re[i]=[idi,cnti],求存在多少个全排列perm满足对所有的 r e [ i ] re[i] re[i]都有 p e r m [ 0.. i d i ] perm[0..id_i] perm[0..idi]恰好有 c n t i cnt_i cnti个逆序对
答案对1000000007取模
2 <= n <= 300
1 <= requirements.length <= n
requirements[i] = [endi, cnti]
0 <= endi <= n - 1
0 <= cnti <= 400
- 输入保证至少有一个
i
满足endi == n - 1
。 - 输入保证所有的
endi
互不相同。
思路:
首先观察题目类型是求全排列的数量,还要取模,大概率是dp
再看数据范围 n=300,m=400,dp的状态方程完全可以放的下二维的
所以我们考虑用 d p [ i ] [ j ] dp[i][j] dp[i][j]表示满足所有 i d < = i id<=i id<=i的re下,前i个数字 逆序对数量是j 的全排列数量
求解普通逆序对时,我们可以扫一遍数组,对于每个 a r [ i ] ar[i] ar[i],求出 j < i j<i j<i中 a r [ j ] > a r [ i ] ar[j]>ar[i] ar[j]>ar[i]的数量并求和
在本题,我们也考虑用这种方式来进行状态的转移
对于 i i i,我们只在乎 a r [ i ] ar[i] ar[i]在 a r [ 1 ] − a r [ i ] ar[1]-ar[i] a