18年蓝桥杯省赛C/C++真题练习笔记
第一题:第几天(送分题)
2000年的1月1日,是那一年的第1天。
那么,2000年的5月4日,是那一年的第几天?
注意:需要提交的是一个整数,不要填写任何多余内容。
*思路:不需要去把它想的太复杂,直接输出就可以了,注意闰年。
#include<stdio.h>
int main()
{
printf("%d",31 + 29 + 31 + 4);
return 0;
}
第二题:明码
汉字的字形存在于字库中,即便在今天,16点阵的字库也仍然使用广泛。
16点阵的字库把每个汉字看成是16x16个像素信息。并把这些信息记录在字节中。
一个字节可以存储8位信息,用32个字节就可以存一个汉字的字形了。
把每个字节转为2进制表示,1表示墨迹,0表示底色。每行2个字节,
一共16行,布局是:
第1字节,第2字节
第3字节,第4字节
....
第31字节, 第32字节
这道题目是给你一段多个汉字组成的信息,每个汉字用32个字节表示,这里给出了字节作为有符号整数的值。
题目的要求隐藏在这些信息中。你的任务是复原这些汉字的字形,从中看出题目的要求,并根据要求填写答案。
这段信息是(一共10个汉字):
4 0 4 0 4 0 4 32 -1 -16 4 32 4 32 4 32 4 32 4 32 8 32 8 32 16 34 16 34 32 30 -64 0
16 64 16 64 34 68 127 126 66 -124 67 4 66 4 66 -124 126 100 66 36 66 4 66 4 66 4 126 4 66 40 0 16
4 0 4 0 4 0 4 32 -1 -16 4 32 4 32 4 32 4 32 4 32 8 32 8 32 16 34 16 34 32 30 -64 0
0 -128 64 -128 48 -128 17 8 1 -4 2 8 8 80 16 64 32 64 -32 64 32 -96 32 -96 33 16 34 8 36 14 40 4
4 0 3 0 1 0 0 4 -1 -2 4 0 4 16 7 -8 4 16 4 16 4 16 8 16 8 16 16 16 32 -96 64 64
16 64 20 72 62 -4 73 32 5 16 1 0 63 -8 1 0 -1 -2 0 64 0 80 63 -8 8 64 4 64 1 64 0 -128
0 16 63 -8 1 0 1 0 1 0 1 4 -1 -2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 5 0 2 0
2 0 2 0 7 -16 8 32 24 64 37 -128 2 -128 12 -128 113 -4 2 8 12 16 18 32 33 -64 1 0 14 0 112 0
1 0 1 0 1 0 9 32 9 16 17 12 17 4 33 16 65 16 1 32 1 64 0 -128 1 0 2 0 12 0 112 0
0 0 0 0 7 -16 24 24 48 12 56 12 0 56 0 -32 0 -64 0 -128 0 0 0 0 1 -128 3 -64 1 -128 0 0
注意:需要提交的是一个整数,不要填写任何多余内容。
*思路:这题主要是在于题意没有那么容易理解,按照题目的要求来对每个整数进行八位二进制转换。再按照题目给的数组排版来输出。得到的十个图案即十个汉字就是该题目所需要的输出。
#include<stdio.h>
void ZH(int a, char A[]);
int main()
{
int i,j,a,b;
for(i=0;i<10;i++){
for(j=0;j<16;j++){
char A[9] = "--------", B[9] = "--------";//每次转换都需要默认的字符串,所以在里面定义
scanf("%d %d",&a,&b);
ZH(a, A);
ZH(b, B);
printf("%s%s",A,B);
printf("\n");
}
}
return 0;
}
void ZH(int a, char A[]){
int i,b;
if(a >= 0){
for(i=0;a>0;i++){
b = a % 2;
if(b == 1){
A[7-i]='1';
}
a /= 2;
}
}
else{
a=128 + a;//负数的二进制转换需要取反加一但是反过来想直接让它加上最大的二进制就可以达到相同的目的
for(i=0;a>0;i++){
b = a % 2;
if(b == 1){
A[7-i]='1';
}
a /= 2;
}
}
}
然后输出九的九次方即可
第三题:乘积尾零
如下的10行数据,每行有10个整数,请你求出它们的乘积的末尾有多少个零?
5650 4542 3554 473 946 4114 3871 9073 90 4329
2758 7949 6113 5659 5245 7432 3051 4434 6704 3594
9937 1173 6866 3397 4759 7557 3070 2287 1453 9899
1486 5722 3135 1170 4014 5510 5120 729 2880 9019
2049 698 4582 4346 4427 646 9742 7340 1230 7683
5693 7015 6887 7381 4172 4341 2909 2027 7355 5649
6701 6645 1671 5978 2704 9926 295 3125 3878 6785
2066 4247 4800 1578 6652 4616 1113 6205 3264 2915
3966 5291 2904 1285 2193 1428 2265 8730 9436 7074
689 5510 8243 6114 337 4096 8199 7313 3685 211
注意:需要提交的是一个整数,表示末尾零的个数。不要填写任何多余内容。
*思路:多个数相乘,我们可以将其拆成他们所有的因数相乘。而这道题要求末尾零的个数,即他是十的多少倍,所以我们可以找出所有的因数中又多少个2和5,我们只需要输出最少的那个就行了。
#include<stdio.h>
int main(){
int a[] = {5650,4542,3554,473,946,4114,3871,9073,90,4329,
2758,7949,6113,5659,5245,7432,3051,4434,6704,3594,
9937,1173,6866,3397,4759,7557,3070,2287,1453,9899,
1486,5722,3135,1170,4014,5510,5120,729,2880,9019,
2049,698,4582,4346,4427,646,9742,7340,1230,7683,
5693,7015,6887,7381,4172,4341,2909,2027,7355,5649,
6701,6645,1671,5978,2704,9926,295,3125,3878,6785,
2066,4247,4800,1578,6652,4616,1113,6205,3264,2915,
3966,5291,2904,1285,2193,1428,2265,8730,9436,7074,
689,5510,8243,6114,337,4096,8199,7313,3685,211};
int i,x=0,y=0,num;
for(i=0;i<100;i++){
num = a[i];
while(num%2==0){
x++;
num /= 2;
}
while(num%5==0){
y++;
num /= 5;
}
}
printf("%d",x<y?x:y);
return 0;
}
第四题:测试次数
x星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。
各大厂商也就纷纷推出各种耐摔型手机。x星球的质监局规定了手机必须经过耐摔测试,并且评定出一个耐摔指数来,之后才允许上市流通。
x星球有很多高耸入云的高塔,刚好可以用来做耐摔测试。塔的每一层高度都是一样的,与地球上稍有不同的是,他们的第一层不是地面,而是相当于我们的2楼。
如果手机从第7层扔下去没摔坏,但第8层摔坏了,则手机耐摔指数=7。
特别地,如果手机从第1层扔下去就坏了,则耐摔指数=0。
如果到了塔的最高层第n层扔没摔坏,则耐摔指数=n
为了减少测试次数,从每个厂家抽样3部手机参加测试。
某次测试的塔高为1000层,如果我们总是采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手机的耐摔指数呢?
请填写这个最多测试次数。
注意:需要填写的是一个整数,不要填写任何多余内容。
这类题目我也是第一次接触,没怎么太理解。只能按照别人的讲解硬套。
#include<iostream>
#include<climits>
using namespace std;
const int N=1000;
int f1[N+1],f2[N+1],f3[N+1];
int main()
{
for(int i=1;i<=N;i++)
{
f1[i]=i;
}
for(int i=1;i<=N;i++)
{
int ans=INT_MAX;
for(int j=1;j<=i;j++)
{
int _max=1 + max(f2[i-j],f1[j-1]);
ans=min(ans,_max);
}
f2[i]=ans;
}
for(int i=1;i<=N;i++)
{
int ans=INT_MAX;
for(int j=1;j<=i;j++)
{
int _max=1 + max(f3[i-j],f2[j-1]);
ans=min(ans,_max);
}
f3[i]=ans;
}
cout<<f3[N]<<endl;
return 0;
}
第五题:快速排序。
以下代码可以从数组a[]中找出第k小的元素。
它使用了类似快速排序中的分治算法,期望时间复杂度是O(N)的。
请仔细阅读分析源码,填写划线部分缺失的内容。
#include <stdio.h>
int quick_select(int a[], int l, int r, int k) {
int p = rand() % (r - l + 1) + l;
int x = a[p];
{int t = a[p]; a[p] = a[r]; a[r] = t;}
int i = l, j = r;
while(i < j) {
while(i < j && a[i] < x) i++;
if(i < j) {
a[j] = a[i];
j--;
}
while(i < j && a[j] > x) j--;
if(i < j) {
a[i] = a[j];
i++;
}
}
a[i] = x;
p = i;
if(i - l + 1 == k) return a[i];
if(i - l + 1 < k) return quick_select( _____________________________ ); //填空
else return quick_select(a, l, i - 1, k);
}
int main()
{
int a[] = {1, 4, 2, 8, 5, 7, 23, 58, 16, 27, 55, 13, 26, 24, 12};
printf("%d\n", quick_select(a, 0, 14, 5));
return 0;
}
注意:只填写划线部分缺少的代码,不要抄写已经存在的代码或符号。
这一题就是常规的快排算法,而且只需要填空,算是比较简单的
答案:a, i+1, r, k-(i-l+1)
第六题:递增三元组
给定三个整数数组
A = [A1, A2, … AN],
B = [B1, B2, … BN],
C = [C1, C2, … CN],
请你统计有多少个三元组(i, j, k) 满足:
- 1 <= i, j, k <= N
- Ai < Bj < Ck
【输入格式】
第一行包含一个整数N。
第二行包含N个整数A1, A2, … AN。
第三行包含N个整数B1, B2, … BN。
第四行包含N个整数C1, C2, … CN。
对于30%的数据,1 <= N <= 100
对于60%的数据,1 <= N <= 1000
对于100%的数据,1 <= N <= 100000 0 <= Ai, Bi, Ci <= 100000
【输出格式】
一个整数表示答案
【样例输入】
3
1 1 1
2 2 2
3 3 3
【样例输出】
27
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
vector<int>a,b,c;
int main() {
int n,t;
while(~scanf("%d",&n)){
for(int i = 1; i <= n; i++) {
scanf("%d",&t);
a.push_back(t);
}
for(int i = 1; i <= n; i++) {
scanf("%d",&t);
b.push_back(t);
}
for(int i = 1; i <= n; i++) {
scanf("%d",&t);
c.push_back(t);
}
sort(a.begin(),a.end());
sort(b.begin(),b.end());
sort(c.begin(),c.end());
long long sum = 0;
for(int i = 0; i < n; i++){
int k,p;
k = lower_bound(a.begin(),a.end(),b[i]) - a.begin();
p = upper_bound(c.begin(),c.end(),b[i]) - c.begin();
p = n - p;
sum += 1ll*k*p;
}
printf("%lld\n",sum);
a.clear();
b.clear();
c.clear();
}
return 0;
}
第七题:螺旋折线
如图p1.png所示的螺旋折线经过平面上所有整点恰好一次。
对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度。
例如dis(0, 1)=3, dis(-2, -1)=9
给出整点坐标(X, Y),你能计算出dis(X, Y)吗?
【输入格式】
X和Y
对于40%的数据,-1000 <= X, Y <= 1000
对于70%的数据,-100000 <= X, Y <= 100000
对于100%的数据, -1000000000 <= X, Y <= 1000000000
【输出格式】
输出dis(X, Y)
【样例输入】
0 1
【样例输出】
3
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
#include<iostream>
#include<cstdlib>
#define sum(a0,n,d) (2*(a0)+((n)-1)*(d))*(n)/2 //等差数列求和公式
typedef long long LL;
using namespace std;
int main()
{
LL x,y;
cin>>x>>y;
LL d=0;//距离
LL n=0;//第几圈
if(y>0&&abs(x)<=y)//当点落在上侧
{
n=y;
d=y-x+2*y;//距离参照点距离
}
else if(x>0&&abs(y)<=x)//当点落在右侧
{
n=y;
d=y+x;
}
else if(y<=0&&y>=x+1&&y<=-x)//当点落在下侧
{
n=-y;
d=-(-y-x);
}
else if(x<0&&y>=x+1&&y<=-x)//当点落在左侧
{
n=-x-1;
d=-(y-x-1-2*x-1);
}
cout<<sum(1,2*n,1)*2-d<<endl;
return 0;
}
第八题:日志统计
小明维护着一个程序员论坛。现在他收集了一份"点赞"日志,日志共有N行。其中每一行的格式是:
ts id
表示在ts时刻编号id的帖子收到一个"赞"。
现在小明想统计有哪些帖子曾经是"热帖"。如果一个帖子曾在任意一个长度为D的时间段内收到不少于K个赞,小明就认为这个帖子曾是"热帖"。
具体来说,如果存在某个时刻T满足该帖在[T, T+D)这段时间内(注意是左闭右开区间)收到不少于K个赞,该帖就曾是"热帖"。
给定日志,请你帮助小明统计出所有曾是"热帖"的帖子编号。
【输入格式】
第一行包含三个整数N、D和K。
以下N行每行一条日志,包含两个整数ts和id。
对于50%的数据,1 <= K <= N <= 1000
对于100%的数据,1 <= K <= N <= 100000 0 <= ts <= 100000 0 <= id <= 100000
【输出格式】
按从小到大的顺序输出热帖id。每个id一行。
【输入样例】
7 10 2
0 1
0 10
10 10
10 1
9 1
100 3
100 3
【输出样例】
1
3
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
#include <cstring>
#include <set>
#include <map>
#define ll long long
const int mod = 1e9+7;
using namespace std;
vector<int>a[100005];
int main()
{
int n,d,k,ts,td,id = 0;
scanf("%d%d%d",&n,&d,&k);
for(int i = 1; i <= n; i++){
scanf("%d%d",&ts,&td);
a[td].push_back(ts);
id = max(td,id);
}
for(int i = 0; i <= id; i++){
int l = a[i].size();
if(l < k) continue;
sort(a[i].begin(),a[i].end());
int le = 0,ri = 0,flag = 0,t = 0;
while(le <= ri && ri < l){
t++;
if(t >= k){
if(a[i][ri] - a[i][le] < d){
flag = 1;
printf("%d\n",i);
break;
}
else le++,t--;
}
ri++;
}
}
return 0;
}
第九题:全球变暖
你有一张某海域NxN像素的照片,".“表示海洋、”#"表示陆地,如下所示:
…
.##…
.##…
…##.
…####.
…###.
…
其中"上下左右"四个方向上连在一起的一片陆地组成一座岛屿。例如上图就有2座岛屿。
由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围会被海水淹没。具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。
例如上图中的海域未来会变成如下样子:
…
…
…
…
…#…
…
…
请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。
【输入格式】
第一行包含一个整数N。 (1 <= N <= 1000)
以下N行N列代表一张海域照片。
照片保证第1行、第1列、第N行、第N列的像素都是海洋。
【输出格式】
一个整数表示答案。
【输入样例】
7
…
.##…
.##…
…##.
…####.
…###.
…
【输出样例】
1
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 1010;
int n, pos[MAXN][MAXN], flag;
bool vis[MAXN][MAXN];
void DFS(int i, int j) {
if(pos[i][j] == flag && vis[i][j] == false) {
vis[i][j] = true;
DFS(i+1,j);
DFS(i-1,j);
DFS(i,j+1);
DFS(i,j-1);
}
}
int countNum() {
fill(vis[0],vis[0]+MAXN*MAXN,false);
int cnt = 0;
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
if(pos[i][j] == flag && vis[i][j] == false) {
DFS(i,j);
cnt++;
}
return cnt;
}
int main() {
scanf("%d",&n);
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
char c;
scanf(" %c",&c); //" %c"
if(c == '#') pos[i][j] = 1;
}
}
flag = 1;
int num1 = countNum(); //淹没前岛屿数目
//淹没
for(int i=1; i<n-1; i++) {
for(int j=1; j<n-1; j++) {
if(pos[i][j] == 1 && pos[i-1][j] == 1 && pos[i+1][j] == 1 &&
pos[i][j-1] == 1 && pos[i][j+1] == 1) pos[i][j] = 2;
}
}
flag = 2;
int num2 = countNum(); //淹没后岛屿数目
if(num2 > num1) {
printf("0\n"); //特判一个岛屿淹没完以后变成了两个岛屿
return 0;
}
printf("%d\n",num1 - num2);
return 0;
}
第十题:乘积最大
给定N个整数A1, A2, … AN。请你从中选出K个数,使其乘积最大。
请你求出最大的乘积,由于乘积可能超出整型范围,你只需输出乘积除以1000000009的余数。
注意,如果X<0, 我们定义X除以1000000009的余数是负(-X)除以1000000009的余数。
即:0-((0-x) % 1000000009)
【输入格式】
第一行包含两个整数N和K。
以下N行每行一个整数Ai。
对于40%的数据,1 <= K <= N <= 100
对于60%的数据,1 <= K <= 1000
对于100%的数据,1 <= K <= N <= 100000 -100000 <= Ai <= 100000
【输出格式】
一个整数,表示答案。
【输入样例】
5 3
-100000
-10000
2
100000
10000
【输出样例】
999100009
再例如:
【输入样例】
5 3
-100000
-100000
-2
-100000
-100000
【输出样例】
-999999829
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
#include<iostream>
using namespace std;
int main()
{
cout<< 31 + 29 + 31 + 30 + 4 <<#include<iostream>
#include<map>
#include<string>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<climits>
typedef long long LL;
using namespace std;
const long long MOD = 1000000009;
const int maxN = 100005;
int n, k;
vector<LL> pos, neg; //保存正数和负数的列表
LL ans;
/**
* .将数组a中[start, end]区间内的数连乘起来
* @param a
* @param start
* @param end
* @param flag
* @return
*/
LL mul(vector<LL> a, int start, int end) {
LL ans=1;
for (int i = start; i <= end; ++i) {
ans=ans*a[i]%MOD;
}
return ans;
}
void work() {
cin>>n>>k;
for (int i=1;i<=n;i++){
LL x;
cin >> x;
if (x > 0)pos.push_back(x);
if (x < 0)neg.push_back(x); //只处理正数和负数, 0不处理
}
sort(pos.begin(), pos.end());
sort(neg.begin(), neg.end());
/*=========下面开始分类讨论========*/
unsigned long sizeSum = pos.size() + neg.size();
//1.正数和负数的个数不足k ,必然有0的存在
if (sizeSum < k) {
ans = 0;
}
//2.正数和负数的个数恰好为k
else if (sizeSum == k) {
//2.1 k与n相等,必须选这k个数,没有0
if (k==n){
ans = mul(pos, start:0, end::pos.size() - 1) * mul((neg, start):0, end::neg.size() - 1) %MOD;
}
//2.2 k<n ,有0的存在
else {
//2.2.1可得正数解当且仅当:正数全部选中,负数全部选中且为偶数个
if (neg.size()%2 == 0){
ans = mul(pos, start: 0, end::pos.size() -1) * mul((neg, start):0, end::neg.size() -1) % MOD;
} else {
//2.2.2负数是奇数个,全部选中结果为负数,不全部选中可得0 ,结果就是0
ans = 0;
}
}
}else{
//3.正数和负数的个数大于k ,情况比较复杂
//sum>k
//3.1没有正数,负数和0中选k个
if (pos.size() == 0) {
if(k%2==0){//3.1.1k是偶数.
ans = mul(neg, start:0, end::k - 1); //正向选k个
} else { //3.1.2 k是奇数
if (sizeSum < n) //有0
ans = 0;
else//没有0 ,必须从所有负数中选奇数个数=》连乘绝对值小的
ans = mul(neg, start::neg.size() - k, end::neg.size() - 1); //逆向选k个
//3.2没有负数
} }else if (neg.size() == 0) {
ans = mul(pos, star::pos.size() - k, end::pos.size() - 1);//逆向选k个
//3.3有正数也有负数
} else {
int posStart;
int negEnd;
if (k >= pos.size()) { //3.3.1 正数不足k个
//假定正数全部选中, 剩余偶数个负数,等 会再来挪动标尺
if ((k - pos.size()) % 2 == 0) {
negEnd = k - pos.size() - 1;//负数选择的截止下标
posStart = 0;//正数选择的起始下标
} else {
//剩余个数是奇数,正数先少选一个
posStart = 1;//正数选择的起始下标
negEnd = k - pos.size();//负数选择的截止下标
}
} else { //正数多余k个,假定从正数中先选最大的k个
//if(k%2==0){ //k是偶数
negEnd = -1;
posStart = pos.size() - k;
//}else{//k是奇数,先少选一个
//negEnd=-1;
//posStart = pos.size()-1-k;
//}
}
//双标尺移动
while (negEnd + 2 < neg.size() && posStart + 2 < pos.size() &&
neg[negEnd + 1] * neg[negEnd + 2] > pos[posStart] * pos[posStart + 1]) {
negEnd += 2;
posStart += 2;
}
ans = mul(neg, start:0, negEnd) * mul(pos, posStart, end::pos.size() - 1) % MOD;
}
}
cout << ans << endl;
}
int main() {
//work();
cout << 1LL * 100000 * 100000 % MOD * 10000 % MOD << endl;
cout << -2LL * 100000 * 100000 % MOD << endl;
return 0;
}endl;
return 0;
}