习题
- 第一章 绪论
- 第二章 数字图像基础
-
- 习题1
- 习题2
- 习题3
- 习题4
- 习题5
- 习题6
-
-
-
- 已知一副数字图像 f ( x , y ) f(x,y) f(x,y),其中 f ( 0 , 0 ) = 100 f(0,0)=100 f(0,0)=100, f ( 0 , 1 ) = 150 f(0,1)=150 f(0,1)=150, f ( 1 , 0 ) = 200 f(1,0)=200 f(1,0)=200, f ( 0 , 0 ) = 100 f(0,0)=100 f(0,0)=100, f ( 1 , 1 ) = 250 f(1,1)=250 f(1,1)=250。
- (1)用邻近插值求 f ( 0.4 , 0.4 ) f(0.4,0.4) f(0.4,0.4);
- (2)用双线性插值求 f ( 0.4 , 0.4 ) f(0.4,0.4) f(0.4,0.4)
-
-
- 习题7
- 习题8
- 习题9
第一章 绪论
习题1
什么是数字图像?
答:一幅图像可定义为一个二维函数f(x,y),这里x和y是空间坐标,而在任何一对空间坐标(x,y)上的幅值f称为该点图像的强度或灰度。当x,y和幅值f为有限的、离散的数值时,称该图像为数字图像。
习题2
什么是像素?
答:数字图像是由有限的元素组成的,每一个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。
第二章 数字图像基础
视觉感知要素;图像的获取、取样和量化;像素间的一些基本关系
习题1
7mmx7mm的CCD芯片有1024x1024元素,将其聚焦到相距0.5m远的方形平坦区域。该摄像机每毫米能解析多少线对?摄像机配置35mm镜头。
分析:空间分辨率是图像中可辨别的最小细节,单位距离的可分辨线对数反映了在原始场景中分析细节的能力。一个线对是由两条线组成,要能分辨它至少应有两个像素,如果能求得原始场景中单位距离的成像数目就能求出可分辨线对数。那么应该利用教材中图2.3的成像模型来求解。
解:先求原始场景中1mm在CCD芯片上的成像大小如下图:
由 x 35 = 1 500 \frac{x}{35}=\frac{1}{500} 35x=5001,可得x=0.07mm,在0.07mm的CCD芯片上的元素数为 1024 7 × 0.07 = 10.24 \frac{1024}{7}\times0.07=10.24 71024×0.07=10.24,每毫米能解析的线对数为 10.24 2 = 5.12 \frac{10.24}{2}=5.12 210.24=5.12
习题2
数字数据传输速率通常用为每秒钟传输的比特数度量。通常的传输是以一个开始比特、一个字节(8比特)的信息和一个停止比特组成的包完成的。基于这个概念回答下列问题:
(a)用56K波特的调制调解器传输一幅1024x1024、256级灰度的图像要多长时间?
(b)以750K的调制调解器传输要用多少时间?
分析:首先应计算图像数据的大小,再计算实际传输的比特数大小,最后根据调制调节器的速率算出所需的时间。
解:
(a)图像为256级灰度,每像素需要8比特,图像数据的大小为:102410248=8388608比特
实际传输的比特数为:8388608/810=10485760 比特
花费时间: 10485760/(561000)=187.2 秒
(b)花费时间: 10485760/(750*1000)=13.98 秒
习题3
已知一点p的坐标是(x,y),请写出 N 4 ( p ) N_4(p) N4(p), N D ( p ) N_D(p) ND(p), N 8 ( p ) N_8(p) N8(p)
答:
p的4领域像素集(有4个水平和垂直的相邻像素)
N 4 ( p ) N_4(p) N4(p):{(x+1,y),(x-1,y),(x,y+1),(x,y-1)}
p的对角领域像素集(有4个对角邻像素)
N D ( p ) N_D(p) ND(p): {(x+1,y+1),(x+1,y-1),(x-1,y-1),(x-1,y+1)}
p的8领域像素集(有4个水平和垂直的相邻像素和4个对角邻像素)
N 8 ( p ) N_8(p) N8