代码随想录算法训练营第五十二天 | 300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组

打卡第52天,动态规划。

今日任务

● 300.最长递增子序列
● 674. 最长连续递增序列
● 718. 最长重复子数组

300.最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

代码随想录

  1. dp数组以及下标定义
    dp[i] 以 下标i 的值为结尾的最长递增子序列长度
  2. 递推公式
    i f ( n u m s [ i ] > n u m s [ j ] ) d p [ i ] = m a x ( d p [ j ] + 1 , d p [ i ] ) ; if(nums[i] > nums[j]) dp[i] = max(dp[j] + 1, dp[i]); if(nums[i]>nums[j])dp[i]=max(dp[j]+1,dp[i]);
    从 下标0 开始 逐一与 num[i] 比较,如果 nums[i] > nums[j] 成立,说明以 下标j 的值 为结尾的序列加上 nums[i],依然为递增序列,长度加一;但是不一定是最长的,要与nums[i]做比较。
  3. 初始化
    dp 全部初始化为1
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.size() <= 1) return nums.size();
        vector<int> dp(nums.size(), 1); 
        int res = 0;
        for(int i = 1; i < nums.size(); i++) {
            for(int j = 0; j < i; j++) {
                if(nums[i] > nums[j]) dp[i] = max(dp[j] + 1, dp[i]);
            }
            res = max(res, dp[i]);
        }
        return res;
    }
};

674. 最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 lrl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 1 <= nums.length <= 104
  • -109 <= nums[i] <= 109

我的题解

动态规划:

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        if(nums.size() <= 1) return nums.size();
        vector<int> dp(nums.size(), 1);
        int res = 0;
        for(int i = 1; i < nums.size(); i++) {
            if(nums[i] > nums[i - 1]) dp[i] = dp[i - 1] + 1;
            res = max(res, dp[i]);
        }
        return res;
    }
};

贪心:

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        if(nums.size() <= 1) return nums.size();
        int res = 0, cnt = 1;
        for(int i = 1; i < nums.size(); i++) {
            if(nums[i] > nums[i - 1]) cnt++;
            else cnt = 1;  
            res = max(res, cnt);
        }
        return res;
    }
};

718. 最长重复子数组

给两个整数数组 nums1nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

示例 2:

输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100

代码随想录

  1. dp 以及 下标的定义
    dp[i][j] 以数组1的i - 1为结尾,以数组2的j - 1的结尾,最长公共数组长度。
  2. 递推公式
    i f ( n u m s 1 [ i − 1 ] = = n u m s 2 [ j − 1 ] ) d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 ; if(nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1; if(nums1[i1]==nums2[j1])dp[i][j]=dp[i1][j1]+1;
  3. 初始化
    dp[i][0] 和dp[0][j]初始化为0。
class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        int n = nums1.size(), m = nums2.size();
        vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0)); // dp[i][j] 以数组1的i - 1为结尾,以数组2的j - 1的结尾,最长公共数组长度。
        int res = 0;
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= m; j++) {
                if(nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1; 
                res = max(res, dp[i][j]);
            }
        }
        return res;
    }
};
代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值