思路分析: 把第一个皇后放到第一行第一列
(1)把第二个皇后放到第二行第一列,进行判断,如果不行,放在第二列,进行判断,如果不行,放在 第三列,进行判断,一次把所有列进行尝试,直至找到合适位置
(2)把第三个皇后放到第三行第一列,同步骤2
(3)........
(4)直至第8个皇后也能放到合适位置,此时第一个符合要求摆法便找到。
(5)当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯。把第一个皇后在第一行第一列的所 有解都找到
(6)继续把第一个皇后放到第一行第二列,继续执行上述步骤
结果表示:用一个数组来表示摆法,比如arr[8]={0,4,5,7,6,1,2,3},下标对应的是第几行, 数值对应的是第几列。
arr[i]=j 第i+1个皇后,放在了第i+1行第j+1列
代码实现:
public class Queen {
//定义一个max,表示一下共有多少个皇后,同理可求n个皇后
int max = 8;
//定义一个数组,报错皇后放置的位置
int[] array = new int[max];
//定义一个变量,保存共有多少中摆法
static int count = 0;
public static void main(String[] args) {
Queen queen=new Queen();
queen.queen8(0);
System.out.println("共有"+count+"种摆法");
}
//放置n个皇后,递归
private void queen8(int n) {
//递归终止条件
if (n == max) {//8个皇后放好了
print();
return;
}
//依次放入皇后,判断是否冲突
for (int i = 0; i < max; i++) {
//把当前这个皇后,放到该行的第1列
array[n] = i;
if (judge(n)) {
//如果不冲突,放下一个皇后
queen8(n + 1);
}
//如果冲突,放下一列
}
}
private void print(){
count++;
for (int i = 0; i <array.length ; i++) {
System.out.print(array[i]+" ");
}
System.out.println();
}
//判断是否冲突
private boolean judge(int n) {
//判断当前皇后与前面的n-1个是否冲突
for (int i = 0; i < n; i++) {
//任意两个皇后都不能处于同一行,同一列或者同一写线上
//判断是否在同一行 没有必要n++
//判断是否同一列 array[i]==array[n]
//是否同一斜线 Math.abs(n-i)==Math.abs(array[n]-array[i]
if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
return false;
}
}
return true;
}
}