八皇后问题Java

思路分析: 把第一个皇后放到第一行第一列

        (1)把第二个皇后放到第二行第一列,进行判断,如果不行,放在第二列,进行判断,如果不行,放在 第三列,进行判断,一次把所有列进行尝试,直至找到合适位置

        (2)把第三个皇后放到第三行第一列,同步骤2

        (3)........

        (4)直至第8个皇后也能放到合适位置,此时第一个符合要求摆法便找到。

        (5)当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯。把第一个皇后在第一行第一列的所 有解都找到

        (6)继续把第一个皇后放到第一行第二列,继续执行上述步骤

结果表示:用一个数组来表示摆法,比如arr[8]={0,4,5,7,6,1,2,3},下标对应的是第几行, 数值对应的是第几列。

arr[i]=j 第i+1个皇后,放在了第i+1行第j+1列

代码实现:


public class Queen {
    //定义一个max,表示一下共有多少个皇后,同理可求n个皇后
    int max = 8;
    //定义一个数组,报错皇后放置的位置
    int[] array = new int[max];
    //定义一个变量,保存共有多少中摆法
    static int count = 0;

    public static void main(String[] args) {
        Queen queen=new Queen();
        queen.queen8(0);
        System.out.println("共有"+count+"种摆法");
    }
    //放置n个皇后,递归
    private void queen8(int n) {
        //递归终止条件
        if (n == max) {//8个皇后放好了
            print();
            return;
        }
        //依次放入皇后,判断是否冲突
        for (int i = 0; i < max; i++) {
            //把当前这个皇后,放到该行的第1列
            array[n] = i;
            if (judge(n)) {
                //如果不冲突,放下一个皇后
                queen8(n + 1);
            }
            //如果冲突,放下一列
        }
    }
    private void print(){
        count++;
        for (int i = 0; i <array.length ; i++) {
            System.out.print(array[i]+" ");
        }
        System.out.println();
    }
    //判断是否冲突
    private boolean judge(int n) {
        //判断当前皇后与前面的n-1个是否冲突
        for (int i = 0; i < n; i++) {
            //任意两个皇后都不能处于同一行,同一列或者同一写线上
            //判断是否在同一行  没有必要n++
            //判断是否同一列 array[i]==array[n]
            //是否同一斜线 Math.abs(n-i)==Math.abs(array[n]-array[i]
            if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
                return false;
            }
        }
        return true;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值