离散(图论)

一、图的基本概念:

握手定理:在任何无向图中,所有顶点的度数之和等于边数的2倍;

                  在任何有向图中,所有顶点的度数之和等于边的2倍,所有顶点的入度之和等于出度之和等于边的条数;

        简单图:在图中,若不存在顶点到其自身的边,且同一条边不重复出现,则称这样的图为简单图

         无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为 无向完全图

顶点度数 = 点数 - 1

        有向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为 无向完全图

顶点入度 = 顶点出度 = 点数 - 1;

        割点:在图中删去该点,则图不连通

        割边(桥):在图中删去改边,则图不连通

        点连通度k(G) = 使连通图G成为一个不连通图需要删除的点的最小数目,记为K,则图也可称作K-连通图

       边连通度 = 使连通图G成为一个不连通图需要删除的点的最小数目,记为K,则图也可称作K-连通图

        

         (a): 删除任何一个点的四条边,图都无法联通,故边连通度为4,删除任意四个点图都无法联通,故点连通度为4

        点割集:割点 + 去除n个点图无法联通且集合之间不能重复出现元素

        边割集:同上

         无向图的关联矩阵:

        行表示边,列表示点,用关联矩阵画图时可根据列中有1的相连,例:e2时 v1和v2相连,若为2,则说明为环 

        有向图的关联矩阵:

         若为1则为出,-1为进,画图原理同上

        邻接矩阵:a(ij)表示从vi到vj的边数

         

         1) v1到v4为a(1,4)的数目   2)v1到v1为a(1,1)的数目

             回路的数目为从左上到 右下的和,例3) = 5+2+3+1 = 11

             通路的数目整个邻接矩阵都是,加起来即可,A的n次方代表长度为n的通路或回路

 

二、欧拉图与哈密顿图

        

                有上述定理可知:a中结点度数均为偶数故为欧拉图,b不连图不是,c是,d存在奇数度数

         

 

         水平有限没整理好

        最短路:

求从v1到其余各点的最短路径和距离

  

Dijkstra标号法求解:从局部最优推至全局最优 

三、树

 

        2. 有握手定理 与 m = n -1联立求解即可 m为边,n为节点

 破圈法求解: 

 

按照每条边的原位置建,不要出现圈即可

 

 

         左边的边为0 , 右边的边为1,从头写到叶节点即为最佳前缀编码

四、平面图

         平行边与环不影响图的平面性

        平面图所有面的次数之和等于边数的两倍 

 

 

 

 

 

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值