适合写代码的5款字体【推荐】

Consolas

  1. Consolas是一套等宽字体的字型,属无衬线字体,由Lucas de Groot设计。
  2. 这套字型使用了微软的ClearType 字型平滑技术,并随同Windows Vista、Office 2007及Microsoft Visual Studio中发行,或可在微软的网站下载。在Windows Vista的6套新字型中,Consolas近似于前版Windows中 的2款内建字型:Lucida Console与Courier New,主要为程序代码的显示字型而设计的,特别之处是它的“0”字加入了一斜撇,以方便与字母“O”分辨。

在这里插入图片描述

字体下载:https://font.chinaz.com/929234710.htm

Jetbrains Mono

  1. JetBrains Mono 是一款专为开发者打造的开源编程字体。
  2. 在设计 Mono 字体之初,团队充分考虑了长时间查阅代码可能导致的眼睛疲劳问题,以及受影响的因素,比如字母的大小和形状、空间量、自然等宽平衡、不必要的细节、连字、以及难以区分的符号或字母(l 和 I)和连字等。

在这里插入图片描述

字体下载:https://www.oschina.net/p/jetbrains-mono?hmsr=aladdin1e1

Monaco

  1. Monaco 是一个无衬线等宽字体
  2. Monaco 作为 Mac OS X 的自带字体之一,字体设计优美、秀丽大方,书写流畅,整体效果非常漂亮,因为具有美观与容易辨识的优点,常作为电脑指令与代码的显示,适合应用于海报设计、书籍装帧、画册封面、产品包装设计等应用。

在这里插入图片描述
字体下载:https://font.chinaz.com/929238414.htm

Fira Code

  1. Fira Code是一种免费的等宽字体,
  2. 包含常用的编程语言中多种字符组合的连字。这只是一个字体呈现功能,底层代码仍然与ASCII兼容。这有助于更快地阅读和理解代码。对于一些常见的序列,如…或//,连字允许我们纠正间距。

在这里插入图片描述
字体下载:https://font.chinaz.com/929238414.htm

Cascadia Code

  1. Cascadia Code 是由微软出品的一款开源等宽字体,
  2. Cascadia Code 是 Microsoft 提供的一种新的等宽字体,可为命令行应用程序和文本编辑器提供全新的体验。 Cascadia Code 是与 Windows 终端一起开发的。 建议将此字体与终端应用程序和文本编辑器(如 Visual Studio 和 Visual Studio Code)一起使用。

在这里插入图片描述

字体下载:https://www.fonts.net.cn/font-37973291246.html

OpenCV(Open Source Computer Vision Library),是一个开源计算机视觉库,主要用于实时图像处理、计算机视觉任务等。在手字体识别方面,它提供了一些基础工具,如图像预处理(灰度化、二值化、去噪)、特征提取(例如HOG、SIFT或轮廓检测)以及机器学习模型用于字符识别。 以下是一个简单的Python示例,展示了如何使用OpenCV进行手数字识别的基本流程: ```python import cv2 import numpy as np from sklearn import svm # 1. 加载训练数据集(通常包含手数字图片及其对应的标签) # 这里假设我们已经有了训练好的数据集,包括图像和分类器 # train_data, labels = ... # 2. 预处理图片 def preprocess_image(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, threshold = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) return threshold # 3. 提取特征 def extract_features(image): # 使用SIFT或其他特征提取器 sift = cv2.xfeatures2d.SIFT_create() keypoints, descriptors = sift.detectAndCompute(image, None) return descriptors # 4. 创建并训练支持向量机(SVM)分类器 clf = svm.LinearSVC() X_train = [extract_features(preprocess_image(img)) for img in train_data] y_train = labels clf.fit(X_train, y_train) # 5. 手字体识别 test_img_path = "path_to_your_test_image.jpg" test_img = cv2.imread(test_img_path) processed_img = preprocess_image(test_img) features = extract_features(processed_img) prediction = clf.predict([features]) print(f"Predicted digit: {prediction}") ``` 注意,这只是一个基本框架,实际的手字体识别可能会更复杂,涉及到神经网络(如Tesseract、TensorFlow等)或者深度学习技术。此外,获取足够准确的识别结果往往需要大量的标注数据和复杂的算法优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Almango

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值