去中心化金融笔记(三)—— Uniswap V3 详解

5 篇文章 0 订阅
4 篇文章 0 订阅

加粗为自己添加的内容
配套课程视频:【01 区块链金融课程简介】- B站
课程实验以及讲义:liangpeili/defi-practices - Github
完成的实验代码:
https://github.com/DestinyWei/defi-practices
https://github.com/DestinyWei/defi-theory
若有任何问题或错误,可在Notion评论或直接评论
完整笔记请查看 Notion 链接:https://dune-marten-78b.notion.site/85b1d29c86344112a886fcfb2ea1c44c?pvs=4

个人博客:Howe的个人博客

Uniswap V3

Uniswap V3 的改进

  1. 提高资金利用率**(集中流动性,即只针对某一个范围做流动性,而不是从无穷小到无穷大都做流动性)**,增加 LP 深度
  2. 增强价格预言机的方便性和准确性
  3. 灵活的手续费收取机制(0.05% / 0.3% / 1%)

Uniswap V2 的资金利用率

在这里插入图片描述

在 V2 中,当我们想要做流动性时需要添加 x 和 y 数量的代币才能实现,但实际参与点到池子流动性的代币数量只有 x r e a l x_{real} xreal y r e a l y_{real} yreal,除去这两个部分的资金部分一直都没有被使用到,因此在 V2 当中资金利用率不算很高

示例

在这里插入图片描述

假设当前处于 c 点的位置,x 表示 ETH,y 表示 DAI,两者的价格在 a 到 b 的范围内波动,在 V2 当中我们需要在 c 点投入 10 ETH 和 200 DAI,而在 V3 当中我们只需要在 c 点投入 x r e a l x_{real} xreal y r e a l y_{real} yreal 数量即 5 ETH 和 100 DAI,此时资金的利用率翻了一倍

流动性提供的方式

在这里插入图片描述

在 V2 中提供流动性是可以从 0 到无穷进行提供,但代币的价格从 0 到无穷大的范围内波动的概率很低,一般只会在一个小的范围内波动。所以 V3 允许用户只在某一个小范围区间提供流动性,如图Ⅱ。当多个用户都在自己设定的小范围区间提供流动性时,系统的流动性会变成图Ⅲ

提供 LP 作为限价订单

我们可以像在中心化交易所那样通过做 LP 来做限价订单,区别在于中心化交易所的限价订单的价格是固定的,而 Uniswap 则需要你提供一个小范围

还是以前面的图为例,比如当前 ETH 价格在 c 点,我们预测 ETH 会跌即向 a 点移动,此时我们只需要提供 y r e a l y_{real} yreal 数量的 DAI,而不用提供 x r e a l x_{real} xreal 数量的 ETH。当 ETH 跌到超过 a 点的位置,我们投入的 DAI 便会全部换成 ETH,但如果 ETH 的价格又回到了超过了 a 点的位置,那么我们手里的 ETH 会全部换回 DAI

应用场景

  • 稳定币的兑换(0.99 — 1.01)
  • Interest-bearing ASSET:xSushi/Sushi 等
  • 固定收益债券
  • IDO
  • 保险

影响

  • 波动比例大 Δ x x \frac{\Delta x}{x} xΔx Δ y y \frac{\Delta y}{y} yΔy,我们在 Uniswap V3 中提供的 x 和 y 都比较小,所以波动比例大)
  • 无常损失高
  • LP 挖矿实现机制的更改
  • 手续费计算复杂
  • LP Token:ERC20 → ERC721

Virtual Reserves

在这里插入图片描述
在这里插入图片描述

Virtual Reserves 其实就是前面我们所提到的在 V2 当中没有被利用到的资金量即 x v x_v xv y v y_v yv

由上图我们可以推导出

x ∗ y = k = L 2 ⇒ L = k x = x r e a l + x v y = y r e a l + y v \begin{align} &x*y=k=L^2 \Rightarrow L=\sqrt{k} \\ &x=x_{real}+x_v \\ &y=y_{real}+y_v \end{align} xy=k=L2L=k x=xreal+xvy=yreal+yv

给定 a,b,L 的情况下,求 x v x_v xv y v y_v yv,此时我们已经得知

{ x ∗ y = L 2 P = y x ⇒ { x = L P y = L ∗ P \left\{ \begin{aligned} & x*y=L^2 \\ & P=\frac{y}{x} \end{aligned} \right. \Rightarrow \left\{ \begin{aligned} & x=\frac{L}{\sqrt{P}} \\ & y=L*\sqrt{P} \end{aligned} \right. xy=L2P=xy x=P Ly=LP

在 b 点,其为范围的上限,此时 x r e a l = 0 x_{real}=0 xreal=0,所以

x = x r e a l + x v = L P b ⇒ x v = L P b x=x_{real}+x_v=\frac{L}{\sqrt{P_b}} \Rightarrow x_v=\frac{L}{\sqrt{P_b}} x=xreal+xv=Pb Lxv=Pb L

在 a 点,其为范围的下限,此时 y r e a l = 0 y_{real}=0 yreal=0,所以

y = y r e a l + y v = L ∗ P a ⇒ y v = L ∗ P a y=y_{real}+y_v=L*\sqrt{P_a} \Rightarrow y_v=L*\sqrt{P_a} y=yreal+yv=LPa yv=LPa

x v x_v xv y v y_v yv 代入 (6) 可得

( x r e a l + x v ) ∗ ( y r e a l + y v ) = L 2 ( x r e a l + L P b ) ∗ ( y r e a l + L ∗ P a ) = L 2 \begin{aligned} (x_{real}+x_v)*(y_{real}+y_v)=L^2 \\ (x_{real}+\frac{L}{\sqrt{P_b}})*(y_{real}+L*\sqrt{P_a})=L^2 \end{aligned} (xreal+xv)(yreal+yv)=L2(xreal+Pb L)(yreal+LPa )=L2

根据最后得出的公式,我们可以得到下面的图:

在这里插入图片描述

虚拟流动性案例分析

在这里插入图片描述
在这里插入图片描述

注意:因为 P P P 是使用 y x \frac{y}{x} xy 来计算的,所以 P P P 的单位应该是 DAI / ETH 即一个 ETH 等于多少 DAI

当前价格在 c 点,求 x v x_v xv y v y_v yv

x v = L P b = 20 10 16000 = 0.5 E T H y v = L ∗ P a = 20 10 ∗ 1000 = 2000 D A I \begin{aligned} &x_v=\frac{L}{P_b}=\frac{20\sqrt{10}}{\sqrt{16000}}=0.5 ETH \\ &y_v=L*\sqrt{P_a}=20\sqrt{10}*\sqrt{1000}=2000 DAI \end{aligned} xv=PbL=16000 2010 =0.5ETHyv=LPa =2010 1000 =2000DAI

在 c 点, y r e a l x r e a l = 4000 \frac{y_{real}}{x_{real}}=4000 xrealyreal=4000 的时候,求 x r e a l x_{real} xreal y r e a l y_{real} yreal

{ ( x r e a l + 0.5 ) ∗ ( y r e a l + 2000 ) = 4000 y r e a l x r e a l = 4000 ⇒ { x r e a l = 0.5 y r e a l = 2000 \left\{ \begin{aligned} &(x_{real}+0.5)*(y_{real}+2000)=4000 \\ &\frac{y_{real}}{x_{real}}=4000 \end{aligned} \right . \Rightarrow \left\{ \begin{aligned} &x_{real}=0.5 \\ &y_{real}=2000 \end{aligned} \right . (xreal+0.5)(yreal+2000)=4000xrealyreal=4000{xreal=0.5yreal=2000

在 b 点, y r e a l x r e a l = 8000 \frac{y_{real}}{x_{real}}=8000 xrealyreal=8000 的时候,求 x r e a l x_{real} xreal y r e a l y_{real} yreal

x = x r e a l + x v ⇒ 0.5 = x r e a l + 0.5 ⇒ x r e a l = 0 E T H y = y r e a l + y v ⇒ 8000 = y r e a l + 2000 ⇒ y r e a l = 6000 D A I \begin{aligned} &x=x_{real}+x_v \Rightarrow 0.5=x_{real}+0.5 \Rightarrow x_{real}=0 ETH \\ &y=y_{real}+y_v \Rightarrow 8000=y_{real}+2000 \Rightarrow y_{real}=6000 DAI \end{aligned} x=xreal+xv0.5=xreal+0.5xreal=0ETHy=yreal+yv8000=yreal+2000yreal=6000DAI

在 a 点, y r e a l x r e a l = 2000 \frac{y_{real}}{x_{real}}=2000 xrealyreal=2000 的时候,求 x r e a l x_{real} xreal y r e a l y_{real} yreal

x = x r e a l + x v ⇒ 2 = x r e a l + 0.5 ⇒ x r e a l = 1.5 E T H y = y r e a l + y v ⇒ 2000 = y r e a l + 2000 ⇒ y r e a l = 0 D A I \begin{aligned} &x=x_{real}+x_v \Rightarrow 2=x_{real}+0.5 \Rightarrow x_{real}=1.5 ETH \\ &y=y_{real}+y_v \Rightarrow 2000=y_{real}+2000 \Rightarrow y_{real}=0 DAI \end{aligned} x=xreal+xv2=xreal+0.5xreal=1.5ETHy=yreal+yv2000=yreal+2000yreal=0DAI

如果降到 a 点,移除流动性,会得到多少 x 和 y?

在 a 点 ( x r , y r ) (x_r,y_r) (xr,yr) ( 1.5 , 0 ) (1.5,0) (1.5,0),相当于以均价 6000 1.5 = 4000 \frac{6000}{1.5}=4000 1.56000=4000 的价格把 6000 个 DAI 换成了 1.5 个 ETH,如果缩小 a,b 点的距离,一定程度上起到了限价订单的作用

假设当前市价为 c 点,用户在超过 a 点或 b 点的位置添加流动性时,只需要添加其中一种代币而不需要同时添加两种代币(具体原因会在后面进行分析)

  • 在超过 a 点的位置表示当前 ETH 价格降低,此时用户只需要投入 DAI。这里我们可以理解为用户预估 ETH 价格会跌,所以想要在超过 a 点的位置做流动性,当 ETH 价格到达该位置时,用户之前所投入的 DAI 将会自动换成 ETH,也就是所谓的“低吸”
  • 在超过 b 点的位置表示当前 ETH 价格增加,此时用户只需要投入 ETH。这里我们可以理解为用户预估 ETH 价格会涨,所以想要在超过 b 点的位置做流动性,当 ETH 价格到达该位置时,用户之前所投入的 ETH 将会自动换成 DAI,也就是所谓的“高抛”

在这里插入图片描述

不同价格区间,流动性 L 和 x r x_r xr y r y_r yr 的关系

在 Uniswap V2 中,如果想在 c 点添加流动性,需要提供 ( 1 , 4000 ) (1,4000) (1,4000)。在 Uniswap V3 中,同样的流动性曲线,只需要真实提供 ( 0.5 , 2000 ) (0.5,2000) (0.5,2000),便可以在 a,b 点之间达到同样的 k 值 ( k = x ∗ y ) (k=x*y) (k=xy)。如果在 V3 中,真实提供 ( 1 , 4000 ) (1,4000) (1,4000)。那么 k 值 ( k = L 2 ) (k=L^2) (k=L2) 会如何变化呢?

在这里插入图片描述

注:图中的 x r x_r xr y r y_r yr 是 a 点和 b 点减去 Virtual Reserves 的结果

  1. 如果在价格 P ≤ P a P \le P_a PPa 时,提供流动性,k 值(L 值会如何变化?)

P ≤ P a P \le P_a PPa 时, y r = 0 y_r=0 yr=0

( x r + L P b ) ∗ L P a = L 2 x r + L P b = L P a x r = L ∗ ( 1 P a − 1 P a ) = L ∗ P b − P a P a ∗ P b L = x r ∗ P a ∗ P b P b − P a \begin{aligned} (x_r+\frac{L}{\sqrt{P_b}})*L\sqrt{P_a} &= L^2 \\ x_r+\frac{L}{\sqrt{P_b}} &= \frac{L}{\sqrt{P_a}} \\ x_r=L*(\frac{1}{\sqrt{P_a}}-\frac{1}{\sqrt{P_a}}) &= L*\frac{\sqrt{P_b}-\sqrt{P_a}}{\sqrt{P_a}*\sqrt{P_b}} \\ L &= x_r*\frac{\sqrt{P_a}*\sqrt{P_b}}{\sqrt{P_b}-\sqrt{P_a}} \end{aligned} (xr+Pb L)LPa xr+Pb Lxr=L(Pa 1Pa 1)L=L2=Pa L=LPa Pb Pb Pa =xrPb Pa Pa Pb

故两者关系为:当 x r x_r xr 变大,L 也变大

在这里插入图片描述

  1. 如果在价格 P ≥ P b P \ge P_b PPb 时,提供流动性,k 值(L 值会如何变化?)

P ≥ P b P \ge P_b PPb 时, x r = 0 x_r=0 xr=0

L P b ∗ ( y r + L P a ) = L 2 y r + L P a = L ∗ P b y r = L ∗ ( P b − P a ) L = y r P b − P a \begin{aligned} \frac{L}{\sqrt{P_b}}*(y_r+L\sqrt{P_a}) &= L^2 \\ y_r+L\sqrt{P_a} &= L*\sqrt{P_b} \\ y_r &= L*(\sqrt{P_b}-\sqrt{P_a}) \\ L &= \frac{y_r}{\sqrt{P_b}-\sqrt{P_a}} \end{aligned} Pb L(yr+LPa )yr+LPa yrL=L2=LPb =L(Pb Pa )=Pb Pa yr

故两者关系为:当 y r y_r yr 变大,L 也变大

在这里插入图片描述

  1. P a < P < P b P_a \lt P \lt P_b Pa<P<Pb 时,提供流动性,k 值(L 值会如何变化?)

当 P 处于 P a P_a Pa P b P_b Pb 之间的任意一点, x r x_r xr y r y_r yr 对于维护 [ P a , P b ] [P_a,P_b] [Pa,Pb] 之间的流动性贡献是一样的**(因为他们处于同一条曲线,故两者流动性相同)**

在这里插入图片描述

先计算 ( P , P b ) (P,P_b) P,Pb价格之间,单纯由 x r x_r xr 贡献的流动性

L = x r ∗ P a ∗ P b P b − P a = x r ∗ P ∗ P b P b − P L=x_r*\frac{\sqrt{P_a}*\sqrt{P_b}}{\sqrt{P_b}-\sqrt{P_a}} =x_r*\frac{\sqrt{P}*\sqrt{P_b}}{\sqrt{P_b}-\sqrt{P}} L=xrPb Pa Pa Pb =xrPb P P Pb

再计算 ( P a , P ) (P_a,P) Pa,P价格之间,单纯由 y r y_r yr 贡献的流动性

L = y r P b − P a = y r P − P a L=\frac{y_r}{\sqrt{P_b}-\sqrt{P_a}} =\frac{y_r}{\sqrt{P}-\sqrt{P_a}} L=Pb Pa yr=P Pa yr

所以

L = x r ∗ P ∗ P b P b − P = y r P − P a L =x_r*\frac{\sqrt{P}*\sqrt{P_b}}{\sqrt{P_b}-\sqrt{P}} =\frac{y_r}{\sqrt{P}-\sqrt{P_a}} L=xrPb P P Pb =P Pa yr

案例解析(以虚拟流动性案例分析中的例子为例)

P a = 1000 , P b = 16000 , P = 4000 P_a=1000,P_b=16000,P=4000 Pa=1000,Pb=16000,P=4000

  1. P = P a P=P_a P=Pa 时, ( x r , y r ) = ( 1.5 , 0 ) (x_r,y_r)=(1.5,0) (xr,yr)=(1.5,0)

L = x r ∗ P a ∗ P b P b − P a = 1.5 ∗ 1000 ∗ 16000 16000 − 1000 = 1.5 ∗ 16000 16 − 1 = 0.5 ∗ 40 10 = 20 10 \begin{aligned} L &= x_r*\frac{\sqrt{P_a}*\sqrt{P_b}}{\sqrt{P_b}-\sqrt{P_a}} \\ &= 1.5*\frac{\sqrt{1000}*\sqrt{16000}}{\sqrt{16000}-\sqrt{1000}} \\ &= 1.5*\frac{\sqrt{16000}}{\sqrt{16}-1} \\ &= 0.5*40\sqrt{10} \\ &= 20\sqrt{10} \end{aligned} L=xrPb Pa Pa Pb =1.516000 1000 1000 16000 =1.516 116000 =0.54010 =2010

  1. P = P b P=P_b P=Pb 时, ( x r , y r ) = ( 0 , 6000 ) (x_r,y_r)=(0,6000) (xr,yr)=(0,6000)

L = y r P b − P a = 6000 16000 − 1000 = 6000 30 10 = 20 10 \begin{aligned} L &= \frac{y_r}{\sqrt{P_b}-\sqrt{P_a}} \\ &= \frac{6000}{\sqrt{16000}-\sqrt{1000}} \\ &= \frac{6000}{30\sqrt{10}} \\ &= 20\sqrt{10} \end{aligned} L=Pb Pa yr=16000 1000 6000=3010 6000=2010

  1. P = P c P=P_c P=Pc 时, ( x r , y r ) = ( 0.5 , 2000 ) (x_r,y_r)=(0.5,2000) (xr,yr)=(0.5,2000)

L = x r ∗ P ∗ P b P b − P = 0.5 ∗ 4000 ∗ 16000 16000 − 4000 = 0.5 ∗ 16000 4 − 1 = 0.5 ∗ 40 10 = 20 10 \begin{aligned} L &= \frac{x_r*\sqrt{P}*\sqrt{P_b}}{\sqrt{P_b}-\sqrt{P}} \\ &= \frac{0.5*\sqrt{4000}*\sqrt{16000}}{\sqrt{16000}-\sqrt{4000}} \\ &= \frac{0.5*\sqrt{16000}}{\sqrt{4}-1} \\ &= 0.5*40\sqrt{10} \\ &= 20\sqrt{10} \end{aligned} L=Pb P xrP Pb =16000 4000 0.54000 16000 =4 10.516000 =0.54010 =2010

L = y r P − P a = 2000 4000 − 1000 = 6000 20 10 − 10 10 = 200 10 = 20 10 \begin{aligned} L &= \frac{y_r}{\sqrt{P}-\sqrt{P_a}} \\ &= \frac{2000}{\sqrt{4000}-\sqrt{1000}} \\ &= \frac{6000}{20\sqrt{10}-10\sqrt{10}} \\ &= \frac{200}{\sqrt{10}} \\ &= 20\sqrt{10} \end{aligned} L=P Pa yr=4000 1000 2000=2010 1010 6000=10 200=2010

因此,我们回到最开始的那个问题

如果在 V3 中,真实提供 ( 1 , 4000 ) (1,4000) (1,4000)。那么 k 值 ( k = L 2 ) (k=L^2) (k=L2) 会如何变化呢?

即在 P = 4000 P=4000 P=4000 ( P a , P b ) = ( 1000 , 16000 ) (P_a,P_b)=(1000,16000) (Pa,Pb)=(1000,16000) ( x r , y r ) = ( 1 , 4000 ) (x_r,y_r)=(1,4000) (xr,yr)=(1,4000) 的情况下,求 L

L = x r ∗ P ∗ P b P b − P = 1 ∗ 4000 ∗ 16000 16000 − 4000 = 1 ∗ 16000 4 − 1 = 40 10 L = \frac{x_r*\sqrt{P}*\sqrt{P_b}}{\sqrt{P_b}-\sqrt{P}} = \frac{1*\sqrt{4000}*\sqrt{16000}}{\sqrt{16000}-\sqrt{4000}} = \frac{1*\sqrt{16000}}{\sqrt{4}-1} = 40\sqrt{10} L=Pb P xrP Pb =16000 4000 14000 16000 =4 1116000 =4010

Uniswap V3 无常损失的计算

在这里插入图片描述

仍然以图中的这个数据来进行举例计算,分别计算当用户在 c 点添加 ( 1 , 4000 ) (1,4000) (1,4000) 的流动性且价格从 c 点变到 a 点时 V2,V3 中的无常损失

在 Uniswap V2 中

V c = 1 ∗ 4000 + 4000 = 8000 V h o d l = 1 ∗ 1000 + 4000 = 5000 V 2 = 2 ∗ 1000 + 2000 = 4000 ∴ V 2 中 无常损失为 ( V h o d l − V 2 ) = 1000 \begin{aligned} V_c &= 1*4000+4000=8000 \\ V_{hodl} &= 1*1000+4000=5000 \\ V_2 &= 2*1000+2000=4000 \\ \therefore V2中 & 无常损失为(V_{hodl}-V_2)=1000 \end{aligned} VcVhodlV2V2=14000+4000=8000=11000+4000=5000=21000+2000=4000无常损失为(VhodlV2)=1000

在 Uniswap V3 中,因为 V3 多了一个 Virtual Reserves 及其曲线与 V2 也有差异,在 V2 添加的流动性数量同样添加到 V3 中会有更大的影响,因此我们必需先计算出该 V3 曲线的 x v , y v x_v,y_v xv,yv,再去反推某个点上的 x r , y r x_r,y_r xr,yr,最后才进行价格的计算

在 c 点 ( x r , y r ) = ( 1 , 4000 ) (x_r,y_r)=(1,4000) (xr,yr)=(1,4000),先求 x v , y v x_v,y_v xv,yv

x v = L P b = 40 10 16000 = 1 y v = L ∗ P a = 40 10 ∗ 1000 = 4000 \begin{aligned} x_v &= \frac{L}{\sqrt{P_b}}=\frac{40\sqrt{10}}{\sqrt{16000}}=1 \\ y_v &= L*\sqrt{P_a}=40\sqrt{10}*\sqrt{1000}=4000 \end{aligned} xvyv=Pb L=16000 4010 =1=LPa =4010 1000 =4000

由此可得实际曲线为:

在这里插入图片描述

在 a 点

{ x = x r + x v y = y r + y v ⇒ { 4 = x r + 1 4000 = y r + 4000 ⇒ { x r = 3 y r = 0 V 3 = 3 ∗ 1000 = 3000 V h o d l = 1 ∗ 1000 + 4000 = 5000 ∴ V 3 中 无常损失为 ( V h o d l − V 3 ) = 2000 \left\{ \begin{aligned} x &= x_r+x_v \\ y &= y_r+y_v \end{aligned} \right . \Rightarrow \left\{ \begin{aligned} 4 &= x_r+1 \\ 4000 &= y_r+4000 \end{aligned} \right . \Rightarrow \left\{ \begin{aligned} x_r &= 3 \\ y_r &= 0 \end{aligned} \right . \\ \begin{aligned} V_3 &= 3*1000=3000 \\ V_{hodl} &= 1*1000+4000=5000 \\ \therefore V3中 & 无常损失为(V_{hodl}-V_3)=2000 \end{aligned} {xy=xr+xv=yr+yv{44000=xr+1=yr+4000{xryr=3=0V3VhodlV3=31000=3000=11000+4000=5000无常损失为(VhodlV3)=2000

由此我们可以看出,Uniswap V3 的无常损失更大

我们再将其抽象为更通用的模型:

在这里插入图片描述

前提条件

{ x ∗ y = k P = y x ⇒ { x = k P y = k ∗ P \left\{ \begin{aligned} & x*y=k \\ & P=\frac{y}{x} \end{aligned} \right . \Rightarrow \left\{ \begin{aligned} & x=\frac{\sqrt{k}}{\sqrt{P}} \\ & y=\sqrt{k}*\sqrt{P} \end{aligned} \right . xy=kP=xy x=P k y=k P

在 V 3 中 x v = L P b = k P b y v = L ∗ P a = k ∗ P a \begin{aligned} 在V3中 \\ x_v &= \frac{L}{\sqrt{P_b}}=\frac{\sqrt{k}}{\sqrt{P_b}} \\ y_v &= L*\sqrt{P_a} = \sqrt{k}*\sqrt{P_a} \end{aligned} V3xvyv=Pb L=Pb k =LPa =k Pa

  1. 假设起始价格 P 0 P_0 P0,变化后的价格 P 1 P_1 P1 都满足 P 0 , P 1 ∈ [ P a , P b ] P_0,P_1 \in [P_a,P_b] P0,P1[Pa,Pb],求此时的无常损失(无手续费)

t 0 t_0 t0 的时候 ( x 0 , y 0 ) , P 0 = y 0 x 0 , x 0 ∗ y 0 = k (x_0,y_0),P_0=\frac{y_0}{x_0},x_0*y_0=k (x0,y0),P0=x0y0,x0y0=k

t 0 { t 1 : ( x 1 , y 1 ) , P 1 = y 1 x 1 t h o d l : ( x 0 , y 0 ) , P 1 = y 1 x 1 f ( d ) = V 1 − V h o d l V h o d l = V 1 V h o d l − 1 t_0 \left\{ \begin{aligned} & t_1:(x_1,y_1),P_1=\frac{y_1}{x_1} \\ & t_{hodl}:(x_0,y_0),P_1=\frac{y_1}{x_1} \end{aligned} \right . \\ f(d)=\frac{V_1-V_{hodl}}{V_{hodl}}=\frac{V_1}{V_{hodl}}-1 t0 t1:(x1,y1),P1=x1y1thodl:(x0,y0),P1=x1y1f(d)=VhodlV1Vhodl=VhodlV11

同时在前面我们还计算得到

x = x r e a l + x v y = y r e a l + y v x 1 = k P 1 y 1 = k ∗ P 1 x 0 = k P 0 y 0 = k ∗ P 0 \begin{aligned} x &= x_{real}+x_v \\ y &= y_{real}+y_v \\ x_1 &= \frac{\sqrt{k}}{\sqrt{P_1}} \quad y_1 = \sqrt{k}*\sqrt{P_1} \\ x_0 &= \frac{\sqrt{k}}{\sqrt{P_0}} \quad y_0 = \sqrt{k}*\sqrt{P_0} \end{aligned} xyx1x0=xreal+xv=yreal+yv=P1 k y1=k P1 =P0 k y0=k P0

通过上面的这些公式,我们可以计算出

V 1 = x r e a l ∗ P 1 + y r e a l = ( x 1 − x v ) ∗ P 1 + ( y 1 − y v ) = ( k P 1 − k P b ) ∗ P 1 + ( k ∗ P 1 − k ∗ P a ) = 2 k ∗ P 1 − k ∗ P a − k P b ∗ P 1 \begin{aligned} V_1 &= x_{real}*P_1+y_{real} \\ &= (x_1-x_v)*P_1+(y_1-y_v) \\ &= (\frac{\sqrt{k}}{\sqrt{P_1}}-\frac{\sqrt{k}}{\sqrt{P_b}})*P_1+(\sqrt{k}*\sqrt{P_1}-\sqrt{k}*\sqrt{P_a}) \\ &= 2\sqrt{k}*\sqrt{P_1}-\sqrt{k}*\sqrt{P_a}-\frac{\sqrt{k}}{\sqrt{P_b}}*P_1 \end{aligned} V1=xrealP1+yreal=(x1xv)P1+(y1yv)=(P1 k Pb k )P1+(k P1 k Pa )=2k P1 k Pa Pb k P1

V h o d l = x r e a l ∗ P 1 + y r e a l = ( x 0 − x v ) ∗ P 1 + ( y 0 − y v ) = ( k P 0 − k P b ) ∗ P 1 + ( k ∗ P 0 − k ∗ P a ) = k ( 1 P 0 − 1 P b ) ∗ P 1 + ( P 0 − P a ) ∗ k \begin{aligned} V_{hodl} &= x_{real}*P_1+y_{real} \\ &= (x_0-x_v)*P_1+(y_0-y_v) \\ &= (\frac{\sqrt{k}}{\sqrt{P_0}}-\frac{\sqrt{k}}{\sqrt{P_b}})*P_1+(\sqrt{k}*\sqrt{P_0}-\sqrt{k}*\sqrt{P_a}) \\ &= \sqrt{k}(\frac{1}{\sqrt{P_0}}-\frac{1}{\sqrt{P_b}})*P_1+(\sqrt{P_0}-\sqrt{P_a})*\sqrt{k} \end{aligned} Vhodl=xrealP1+yreal=(x0xv)P1+(y0yv)=(P0 k Pb k )P1+(k P0 k Pa )=k (P0 1Pb 1)P1+(P0 Pa )k

f ( d ) = V 1 − V h o d l V h o d l = V 1 V h o d l − 1 = 2 k ∗ P 1 − k ∗ P a − k P b ∗ P 1 k ( 1 P 0 − 1 P b ) ∗ P 1 + ( P 0 − P a ) ∗ k − 1 = 2 P 1 − P a − P 1 P b ( 1 P 0 − 1 P b ) ∗ P 1 + ( P 0 − P a ) − 1 (1) \begin{aligned} f(d) &= \frac{V_1-V_{hodl}}{V_{hodl}}=\frac{V_1}{V_{hodl}}-1 \\ &= \frac {2\sqrt{k}*\sqrt{P_1}-\sqrt{k}*\sqrt{P_a}-\frac{\sqrt{k}}{\sqrt{P_b}}*P_1} {\sqrt{k}(\frac{1}{\sqrt{P_0}}-\frac{1}{\sqrt{P_b}})*P_1+(\sqrt{P_0}-\sqrt{P_a})*\sqrt{k}} -1 \\ &= \frac {2\sqrt{P_1}-\sqrt{P_a}-\frac{P_1}{P_b}} {(\frac{1}{\sqrt{P_0}}-\frac{1}{\sqrt{P_b}})*P_1+(\sqrt{P_0}-\sqrt{P_a})} -1 \end{aligned} \tag 1 f(d)=VhodlV1Vhodl=VhodlV11=k (P0 1Pb 1)P1+(P0 Pa )k 2k P1 k Pa Pb k P11=(P0 1Pb 1)P1+(P0 Pa )2P1 Pa PbP11(1)

  1. 其他条件不变,假设变化后的价格 P 1 < P a P_1 \lt P_a P1<Pa,计算无常损失

P 1 < P a P_1 \lt P_a P1<Pa 时, y r e a l y_{real} yreal 为 0

V 1 = x r e a l ∗ P 1 + y y e a l = x r e a l ∗ P 1 = ( k P 1 − k P b ) ∗ P 1 \begin{aligned} V_1 &= x_{real}*P_1+y_{yeal} \\ &= x_{real}*P_1 \\ &= (\frac{\sqrt{k}}{\sqrt{P_1}}-\frac{\sqrt{k}}{\sqrt{P_b}})*P_1 \end{aligned} V1=xrealP1+yyeal=xrealP1=(P1 k Pb k )P1

f ( d ) = ( k P 1 − k P b ) ∗ P 1 k ( 1 P 0 − 1 P b ) ∗ P 1 + ( P 0 − P a ) ∗ k − 1 = ( 1 P 1 − 1 P b ) ∗ P 1 ( 1 P 0 − 1 P b ) ∗ P 1 + ( P 0 − P a ) − 1 (2) \begin{aligned} f(d) &= \frac {(\frac{\sqrt{k}}{\sqrt{P_1}}-\frac{\sqrt{k}}{\sqrt{P_b}})*P_1} {\sqrt{k}(\frac{1}{\sqrt{P_0}}-\frac{1}{\sqrt{P_b}})*P_1+(\sqrt{P_0}-\sqrt{P_a})*\sqrt{k}} -1 \\ &= \frac {(\frac{1}{\sqrt{P_1}}-\frac{1}{\sqrt{P_b}})*P_1} {(\frac{1}{\sqrt{P_0}}-\frac{1}{\sqrt{P_b}})*P_1+(\sqrt{P_0}-\sqrt{P_a})} -1 \end{aligned} \tag 2 f(d)=k (P0 1Pb 1)P1+(P0 Pa )k (P1 k Pb k )P11=(P0 1Pb 1)P1+(P0 Pa )(P1 1Pb 1)P11(2)

  1. 其他条件不变,假设变化后的价格 P 1 > P b P_1 \gt P_b P1>Pb,计算无常损失

P 1 > P b P_1 \gt P_b P1>Pb 时, x r e a l x_{real} xreal 为 0

V 1 = x r e a l ∗ P 1 + y y e a l = y y e a l = y − y v = k ∗ P 1 − k ∗ P a \begin{aligned} V_1 &= x_{real}*P_1+y_{yeal} \\ &= y_{yeal} =y-y_v\\ &= \sqrt{k}*\sqrt{P_1}-\sqrt{k}*\sqrt{P_a} \end{aligned} V1=xrealP1+yyeal=yyeal=yyv=k P1 k Pa

f ( d ) = k ∗ P 1 − k ∗ P a k ( 1 P 0 − 1 P b ) ∗ P 1 + ( P 0 − P a ) ∗ k − 1 = P 1 − P a ( 1 P 0 − 1 P b ) ∗ P 1 + ( P 0 − P a ) − 1 (3) \begin{aligned} f(d) &= \frac {\sqrt{k}*\sqrt{P_1}-\sqrt{k}*\sqrt{P_a}} {\sqrt{k}(\frac{1}{\sqrt{P_0}}-\frac{1}{\sqrt{P_b}})*P_1+(\sqrt{P_0}-\sqrt{P_a})*\sqrt{k}} -1 \\ &= \frac {\sqrt{P_1}-\sqrt{P_a}} {(\frac{1}{\sqrt{P_0}}-\frac{1}{\sqrt{P_b}})*P_1+(\sqrt{P_0}-\sqrt{P_a})} -1 \end{aligned} \tag 3 f(d)=k (P0 1Pb 1)P1+(P0 Pa )k k P1 k Pa 1=(P0 1Pb 1)P1+(P0 Pa )P1 Pa 1(3)

由 (1) 我们可以得知,当 P a P_a Pa 趋向于 0, P b P_b Pb 趋向于 ∞ \infty 的时候

f ( d ) = 2 P 1 − P a − P 1 P b ( 1 P 0 − 1 P b ) ∗ P 1 + ( P 0 − P a ) − 1 = 2 P 1 P 1 P 0 + P 0 − 1 ∵ P 1 = P 0 ∗ d , 则 f ( d ) = 2 P 0 ∗ d P 0 ∗ d P 0 + P 0 − 1 = 2 d 1 + d − 1 \begin{aligned} f(d) &= \frac {2\sqrt{P_1}-\sqrt{P_a}-\frac{P_1}{P_b}} {(\frac{1}{\sqrt{P_0}}-\frac{1}{\sqrt{P_b}})*P_1+(\sqrt{P_0}-\sqrt{P_a})} -1 \\ &= \frac{2\sqrt{P_1}}{\frac{P_1}{\sqrt{P_0}}+\sqrt{P_0}}-1 \\ \because P_1 &= P_0*d,则 \\ f(d) &= \frac{2\sqrt{P_0*d}}{\frac{P_0*d}{\sqrt{P_0}}+\sqrt{P_0}}-1 \\ &= \frac{2\sqrt{d}}{1+d}-1 \end{aligned} f(d)P1f(d)=(P0 1Pb 1)P1+(P0 Pa )2P1 Pa PbP11=P0 P1+P0 2P1 1=P0d,=P0 P0d+P0 2P0d 1=1+d2d 1

从这看出其与 V2 的公式相同,即说明 V3 的公式推导正确

在这我们说回前面所提到的问题

假设当前市价为 c 点,用户在超过 a 点或 b 点的位置添加流动性时,只需要添加其中一种代币而不需要同时添加两种代币

在这里插入图片描述

V3 与 V2 最大的不同是引进了集中流动性并带来了 Virtual Reserves,当我们在上面的曲线添加流动性时必须要用减去 x r , y r x_r,y_r xr,yr 的值之后的曲线再进行计算。否则在原来的曲线进行计算,即使在超过 a 点或 b 点的位置添加流动性,其结果仍会是两种代币都需要添加;而使用减去 x r , y r x_r,y_r xr,yr值之后的曲线进行计算则可以得到正确的结果,因为当处于超过 a 点或 b 点的位置, x r e a l x_{real} xreal y r e a l y_{real} yreal 总会有一个超出范围而变为 0(如下两图),即只需要添加一种代币即可

在这里插入图片描述
在这里插入图片描述

同时我们需要的注意的是,当我们是在下图的情况下(市价在 c 点,想要在 d 点到 e 点添加流动性)时,其仍需同时添加两种代币。因为本质上其仍处于 x r e a l x_{real} xreal y r e a l y_{real} yreal 的范围之内

在这里插入图片描述

Staking Rewards

这是一个关于用户抵押资金,在一段时间之后取回本金并计算可以拿到多少奖励的算法

在这里插入图片描述

由此引出了相应的数学公式:

在这里插入图片描述

使用上面的公式进行计算时,有时候不利于开发者编写代码(一是在最后统一进行计算需要对每个用户进行轮询计算,代码难以实现;二是这么做 gas 费会很高),因此对上面公式的表达进行了修改即计算 k 到 n-1 秒的奖励从原先的直接计算改为通过计算从 0 到 n-1 秒的奖励减去 从 0 到 k 秒的奖励:

在这里插入图片描述

示例:

只有一个用户质押

在这里插入图片描述

有两个用户质押,并且中途有用户进行提款操作

在这里插入图片描述

多个用户参与质押与提款

在这里插入图片描述

算法设计

在这里插入图片描述

最后,这部分的材料来源:Staking Rewards - Intro | DeFi - YouTube

再补充一个个人认为比较好的相关材料:流动性挖矿-合约原理详解 — xyyme.eth


后续笔记会在之后发布,让我们尽情期待,您也可以关注我的推特账号(@weihaoming)以获取更多笔记资源……

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值