深度学习知识及神经网络的可解释性
文章平均质量分 62
分享深度学习,神经网络知识包括但不限于模型,代码,论文解读
摸鱼艺术家_
研究生在读,不定更新深度学习神经网络知识及方法,分享 C,Python 及其他编程语言的有趣代码。
展开
-
神经网络可解释性基础知识综述
神经网络的结构大都是黑盒模型,黑盒模型指的是在模型的输入和输出之间存在一定的映射关系,但具体的映射方式不太清楚或难以解释的模型。我们要从”只知其然”变为“知其所以然”原创 2023-10-25 22:18:58 · 1423 阅读 · 2 评论 -
CAM(类激活热力图)算法
本文清晰的讲解了CAM算法出处,概念,原理,及讨论问题及缺点,希望大家认真阅读,多多指教。原创 2023-11-03 15:57:16 · 119 阅读 · 0 评论 -
Facebook AI团队的DETR模型代码复现
5.开始训练,Facebook AI 团队训练了 300 个 epoch,这里推荐修改 为 100,修改自己数据集位置 train2017 和 val2017 以及标注文件的路径,修改自己权重文件路径,开始训练, 训练完成之后会在output生成自己的训练模型 check 什么文件,记住他的路径。这个是我手机上编辑的,所以没放图片,代码里面需要修改的地方我都加了注释,参考文章里面也都有,大差不差,下面有我训练完成的录屏,大家有问题可以评论区讨论以及私信,看见就会回复。上面是所有的代码,大家可自取。原创 2023-11-16 23:55:18 · 2532 阅读 · 13 评论