前言
时间序列预测在金融、天气预报和销售分析等领域中扮演着重要角色。在本文中,我们将探讨如何使用Scikit-learn处理时间数据,并进行基础的时间序列分析。
理解时间序列数据
时间序列数据是按时间顺序排列的数据点集合。不同于其他类型数据,时间序列数据的顺序信息至关重要,因为它反映了数据的发展趋势和模式。
处理时间数据
数据格式与解析
首先,确保你的时间数据是正确格式化的。Python 的 pandas
库是处理时间序列的强大工具,它可以轻松地将字符串转换为 datetime
对象。
import pandas as pd
data = pd.read_csv('time_series_data.csv')
data['date'] = pd.to_datetime(data['date'])
data.set_index('date', inplace=True)