【#3 激活函数:深度学习神经网络的心脏】


前言

在深度学习的世界里,激活函数扮演着至关重要的角色。它们不仅仅是数学函数,更是神经网络能够学习和模拟复杂非线性关系的关键。本文将深入探讨激活函数的作用、常见的激活函数类型,并通过简单的代码示例来展示它们在实际应用中的使用。

激活函数的作用

激活函数的主要作用是为神经网络引入非线性。如果没有非线性,无论神经网络有多少层,其整体功能仍然是一个线性变换,这限制了网络模拟复杂函数的能力。通过引入非线性激活函数,神经网络能够学习和表示更加复杂的模式。

常见的激活函数
  1. Sigmoid函数

    • 公式: f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值