问题描述
给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
例如:
A =
1 2
3 4
A的2次幂
7 10
15 22
输入格式
第一行是一个正整数N、M(1<=N<=30, 0<=M<=5),表示矩阵A的阶数和要求的幂数
接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值
输出格式
输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开
【二维动态数组】:
//动态二维数组的创建:
int** a = new int* [N];//分配一个指针数组,将首地址保存在a中
for (int i = 0; i < N; i++)
a[i] = new int[N];//为指针数组的每一个元素分配一个数组
//动态二维数组的使用:for(int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
cin >> a[i][j];
//动态二维数组的释放(必须先释放指针数组每个元素指向的数组,再释放指针数组)
for (int i = 0; i < N; i++)
{
delete[N]a[i];
a[i] = NULL;
}
delete[N]a;
a = NULL;
【解题思路】:
矩阵乘法法则是对应行和对应列相乘的乘积,除了保留原矩阵的数组还需要一个与它相乘的矩阵,以及一个保留每次相乘后结果的矩阵(不然本应相乘的结果会变)运用for的三个嵌套循环即可。还要注意矩阵的零次幂是单位矩阵,一次幂是他本身。
#include<iostream>
using namespace std;
int main()
{
int M, N;
cin >> N>> M;
int**a = new int*[N];//分配一个指针数组,将首地址保存在a中
for (int i = 0; i < N; i++)
a[i] = new int[N];//为指针数组的每一个元素分配一个数组
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
cin >> a[i][j];
if (M == 0)
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (i == j) cout << "1" << " ";
else cout << "0 ";
}
cout << endl;
}
}
else if(M==1)
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
cout << a[i][j] << " ";
}
}
else
{
int** b = new int* [N];//分配一个与之相乘的数组
int** c = new int* [N];//保存相乘后的数组
for (int i = 0; i < N; i++)
{
b[i] = new int[N];
c[i] = new int[N];
}
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
{
b[i][j] = a[i][j];
c[i][j] = 0;
}
for (int n = 1; n < M; n++)
{
for(int i=0;i<N;i++)
for (int j = 0; j < N; j++)
{
for (int r = 0; r < N; r++)
{
c[i][j] += b[i][r] * a[r][j];
}
}
for (int k = 0; k < N; k++)
for (int t= 0; t < N; t++)
{
b[k][t] = c[k][t];
c[k][t] = 0;
}
}
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
cout << b[i][j] << " ";
cout << endl;
}
}
}