- 博客(4)
- 收藏
- 关注
原创 论文阅读A Neuromorphic Spiking Neural Network UsingTime-to-First-Spike Coding Scheme and AnalogComputi
大背景:使用GPU加速实现的ANN模型需要消耗大量的能量。主要是传统神经模型中采用的是MAC乘加操作。
2024-10-20 16:18:51 894
原创 论文阅读TCJA-SNN: Temporal-Channel Joint Attention forSpiking Neural Networks
介绍SNN背景,脉冲神经网络具有生物合理性、低能量消耗、时空信息表达能力。
2024-10-09 20:19:35 730
原创 RecDis-SNN: Rectifying Membrane Potential Distribution for Directly TrainingSpiking Neural Networks
人工神经网络(ann)在图像分类[16,44,45]、目标检测[14,31,39]、机器翻译[2]、游戏[43,46]等许多应用领域取得了巨大的成功。然而,人工神经网络所需的计算资源的增加对延迟敏感的应用和能量有限的设备造成了负担[28,30,51]。近年来,峰值神经网络(SNN)因其生物学启发的神经行为和高效的计算能力而受到越来越多的关注,并被视为人工神经网络的潜在竞争对手[40]。snn利用二进制尖峰活动,即0表示无,1表示尖峰事件,来传输信息。
2024-09-29 22:03:15 736 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人