(新版)SJTU-OJ-1033. 行列式求值

题目描述

现在给出一个 n × n n \times n n×n 阶行列式,求出它的值。

输入格式

第一行一个数 n n n表示行列式阶数
接下来是一个 n n n n × n n \times n n×n 列的由整数构成的行列式

输出格式

(无)

样例输入

3  
5 1 2  
4 2 5  
3 4 1

样例输出

-59

数据范围

1 ≤ n ≤ 10 1\leq n\leq 10 1n10

答案在int范围之内

行列式复习

       众所周知,矩阵的行列式是这样的,我们不妨先假设一个 n × n n \times n n×n 阶行列式,如下图所示:
∣ A ∣ = ∣ a 1 , 1 a 1 , 2 a 1 , 3 … a 1 , n a 2 , 1 a 2 , 2 a 2 , 3 … a 2 , n a 3 , 1 a 3 , 2 a 3 , 3 … a 3 , n ⋮ ⋮ ⋮ ⋱ ⋮ a n , 1 a n , 2 a n , 3 … a n , n ∣ |A|=\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} &\dots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \dots & a_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,n} \\ \end{vmatrix} \quad A=a1,1a2,1a3,1an,1a1,2a2,2a3,2an,2a1,3a2,3a3,3an,3a1,na2,na3,nan,n
       要求出这个奇奇怪怪的东东,根据我们线性代数所学,有下面几种奇奇怪怪的方法hhh。(应该还有很多,只是这3个我比较熟练)

  1. 代数余子式的方法
  2. 逆序和的方法
  3. 采用行变换的方法,求对角线上的乘积
代数余子式方法

       首先我们看看如果要用c佳佳实现这个玩野,那我们要用到什么知识。如果要用代数余子式的方法,那也就是说,要求出下面等式的和:(按照行展开)
∣ A ∣ = ∑ j = 1 n a i j A i j ( i = 1 , 2 , 3 , ⋯   , n ) |A|=\sum\limits_{j=1}^{n}a_{ij}A_{ij} (i=1,2,3, \cdots, n) A=j=1naijAij(i=1,2,3,,n)
       或者按照列展开也可以:像这样
∣ A ∣ = ∑ i = 1 n a i j A i j ( j = 1 , 2 , 3 , ⋯   , n ) |A|=\sum\limits_{i=1}^{n}a_{ij}A_{ij} (j=1,2,3, \cdots, n) A=i=1naijAij(j=1,2,3,,n)
       补充一句,上面的式子中: A i j A_{ij} Aij表示元素 a i j a_{ij} aij 的代数余子式,而在引入代数余子式之前我们首先要知道余子式的概念, M i j M_{ij} Mij 表示划掉第 i i i 行,划掉第 j j j 列的行列式,而两者之间的关系是:
A i j = ( − 1 ) i + j   M i j A_{ij} = (-1)^{i+j} \ M_{ij} Aij=(1)i+j Mij
       为了展示清楚我们还是假设有一个 n × n n \times n n×n 阶的矩阵
A = ( a 1 , 1 a 1 , 2 a 1 , 3 … a 1 , j − 1 a 1 , j a 1 , j + 1 … a 1 , n a 2 , 1 a 2 , 2 a 2 , 3 … a 2 , j − 1 a 2 , j a 2 , j + 1 … a 2 , n a 3 , 1 a 3 , 2 a 3 , 3 … a 3 , j − 1 a 3 , j a 3 , j + 1 … a 3 , n a 4 , 1 a 4 , 2 a 4 , 3 … … … … … … ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ a i − 1 , 1 a i − 1 , 2 a i − 1 , 3 … a i − 1 , j − 1 a i − 1 , j a i − 1 , j + 1 … a i − 1 , n a i , 1 a i , 2 a i , 3 … a i , j − 1 a i , j a i , j + 1 … a i , n a i + 1 , 1 a i + 1 , 2 a i + 1 , 3 … a i + 1 , j − 1 a i + 1 , j a i + 1 , j + 1 … a i + 1 , n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ a n , 1 a n , 2 a n , 3 … a n , j − 1 a n , j a n , j + 1 … a n , n ) A=\left (\begin{array}{ccccc|c|c} a_{1,1} & a_{1,2} & a_{1,3} &\dots & a_{1,j-1} & a_{1,j} & a_{1,j+1} &\dots & a_{1,n}\\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,j-1} & a_{2,j} & a_{2,j+1} &\dots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \dots & a_{3,j-1} & a_{3,j} & a_{3,j+1}&\dots & a_{3,n} \\ a_{4,1} & a_{4,2} & a_{4,3} & \dots & \dots & \dots &\dots & \dots & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots &\vdots & \vdots & \vdots \\ a_{i-1,1} & a_{i-1,2} & a_{i-1,3} & \dots & a_{i-1,j-1} & a_{i-1,j} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ \hline a_{i,1} & a_{i,2} & a_{i,3} & \dots & a_{i,j-1} & a_{i,j}& a_{i,j+1} & \dots & a_{i,n} \\ \hline a_{i+1,1} & a_{i+1,2} & a_{i+1,3} & \dots & a_{i+1,j-1} & a_{i+1,j} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &\vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &\vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} &\dots & a_{n,j-1} & a_{n,j} & a_{n,j+1} &\dots & a_{n,n}\\ \end{array}\right) A=a1,1a2,1a3,1a4,1ai1,1ai,1ai+1,1an,1a1,2a2,2a3,2a4,2ai1,2ai,2ai+1,2an,2a1,3a2,3a3,3a4,3ai1,3ai,3ai+1,3an,3a1,j1a2,j1a3,j1ai1,j1ai,j1ai+1,j1an,j1a1,ja2,ja3,jai1,jai,jai+1,jan,ja1,j+1a2,j+1a3,j+1ai1,j+1ai,j+1ai+1,j+1an,j+1a1,na2,na3,nai1,nai,nai+1,nan,n
       去掉第 i i i 行,去掉第 j j j 列,结果如下图所示
∣ M i j ∣ = ∣ a 1 , 1 a 1 , 2 a 1 , 3 ⋯ a 1 , j − 1 a 1 , j + 1 … a 1 , n a 2 , 1 a 2 , 2 a 2 , 3 ⋯ a 2 , j − 1 a 2 , j + 1 … a 2 , n a 3 , 1 a 3 , 2 a 3 , 3 ⋯ a 3 , j − 1 a 3 , j + 1 … a 3 , n ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ a i − 1 , 1 a i − 1 , 2 a i − 1 , 3 … a i − 1 , j − 1 a i − 1 , j + 1 … a i − 1 , n a i + 1 , 1 a i + 1 , 2 a i + 1 , 3 … a i + 1 , j − 1 a i + 1 , j + 1 … a i + 1 , n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ a n , 1 a n , 2 a n , 3 … a n , j − 1 a n , j + 1 … a n , n ∣ |M_{ij}|=\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} &\cdots & a_{1,j-1} & a_{1,j+1} &\dots & a_{1,n}\\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,j-1} & a_{2,j+1} &\dots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3,j-1} & a_{3,j+1}&\dots & a_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots &\vdots & \vdots \\ a_{i-1,1} & a_{i-1,2} & a_{i-1,3} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & a_{i+1,2} & a_{i+1,3} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &\vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &\vdots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} &\dots & a_{n,j-1} & a_{n,j+1} &\dots & a_{n,n}\\ \end{vmatrix} \quad Mij=a1,1a2,1a3,1ai1,1ai+1,1an,1a1,2a2,2a3,2ai1,2ai+1,2an,2a1,3a2,3a3,3ai1,3ai+1,3an,3a1,j1a2,j1a3,j1ai1,j1ai+1,j1an,j1a1,j+1a2,j+1a3,j+1ai1,j+1ai+1,j+1an,j+1a1,na2,na3,nai1,nai+1,nan,n
       带入即可得到:
A i j = ( − 1 ) i + j ∣ a 1 , 1 a 1 , 2 a 1 , 3 ⋯ a 1 , j − 1 a 1 , j + 1 … a 1 , n a 2 , 1 a 2 , 2 a 2 , 3 ⋯ a 2 , j − 1 a 2 , j + 1 … a 2 , n a 3 , 1 a 3 , 2 a 3 , 3 ⋯ a 3 , j − 1 a 3 , j + 1 … a 3 , n ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ a i − 1 , 1 a i − 1 , 2 a i − 1 , 3 … a i − 1 , j − 1 a i − 1 , j + 1 … a i − 1 , n a i + 1 , 1 a i + 1 , 2 a i + 1 , 3 … a i + 1 , j − 1 a i + 1 , j + 1 … a i + 1 , n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ a n , 1 a n , 2 a n , 3 … a n , j − 1 a n , j + 1 … a n , n ∣ A_{ij} = (-1)^{i+j}\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} &\cdots & a_{1,j-1} & a_{1,j+1} &\dots & a_{1,n}\\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,j-1} & a_{2,j+1} &\dots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3,j-1} & a_{3,j+1}&\dots & a_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots &\vdots & \vdots \\ a_{i-1,1} & a_{i-1,2} & a_{i-1,3} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & a_{i+1,2} & a_{i+1,3} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &\vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &\vdots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} &\dots & a_{n,j-1} & a_{n,j+1} &\dots & a_{n,n}\\ \end{vmatrix} \quad Aij=(1)i+ja1,1a2,1a3,1ai1,1ai+1,1an,1a1,2a2,2a3,2ai1,2ai+1,2an,2a1,3a2,3a3,3ai1,3ai+1,3an,3a1,j1a2,j1a3,j1ai1,j1ai+1,j1an,j1a1,j+1a2,j+1a3,j+1ai1,j+1ai+1,j+1an,j+1a1,na2,na3,nai1,nai+1,nan,n

       所以,就这么递归下去,阶数逐渐递减,一直到 1 1 1 阶即可得到答案。

求逆序和的方法

逆序定义】一个排列中(如 1 , 5 , 3 , 4 , 2 1,5,3,4,2 1,5,3,4,2),如果一个大的数排在一个小的数前面 【如 5 , 2 5,2 52】,就称这两个数构成一个逆序。
逆序和定义】一个排列中(如 1 , 5 , 3 , 4 , 2 1,5,3,4,2 1,5,3,4,2),所有逆序的数量叫做逆序和,如 1 , 5 , 3 , 4 , 2 1,5,3,4,2 1,5,3,4,2有5个逆序。我们记作 r ( 1 , 5 , 3 , 4 , 2 ) = 5 r(1,5,3,4,2)=5 r(1,5,3,4,2)=5,以此类推,一个排列 b 1 , b 2 , ⋯ b n b_1,b_2,\cdots b_n b1,b2,bn 的逆序和记作: r ( b 1 b 2 b 3 ⋯ a n ) r(b_1b_2b_3\cdots a_n) r(b1b2b3an)
       基于此,行列式计算可以用下面的公式
∣ A ∣ = ∑ b 1 b 2 b 3 ⋯ b n a 1 , b 1 a 2 , b 2 a 3 , b 3 ⋯ a n , b n |A|=\sum\limits_{b_1b_2b_3\cdots b_n}a_{1,b_1}a_{2,b_2}a_{3,b_3}\cdots a_{n,b_n} A=b1b2b3bna1,b1a2,b2a3,b3an,bn
       即为:
∣ A ∣ = ∑ b 1 b 2 b 3 ⋯ b n ( ( − 1 ) r ( b 1 b 2 b 3 ⋯ a n ) ∏ i = 1 n a i , a i ) |A|=\sum\limits_{b_1b_2b_3\cdots b_n}((-1)^{r(b_1b_2b_3\cdots a_n)}\prod\limits_{i=1}^na_{i,a_i}) A=b1b2b3bn((1)r(b1b2b3an)i=1nai,ai)
       注: b 1 , b 2 , ⋯ b n b_1,b_2,\cdots b_n b1,b2,bn 0 ∼ n − 1 0\sim n-1 0n1的全排列。

题目解答

       说完了行列式,我们还是思考如何解题目,我们有三种思路,显然按照第三种,我们会产生一些分式,例如,为了归一化,我们第一行首先就要除以 a 1 , 1 a_1,1 a1,1,再乘以 a 2 , 1 a_{2,1} a2,1,然后加到第二行,显然会由于 double 带来最终结果的误差,这种方法还是先排除。

       此外,如果我们采用余子式的方法,我们需要把余子式的行列式作为一个参数传入递归函数,有点困难(说白了就是我还不会略略略)

       所以还是选择了逆序和的方法。

  1. 生成 n n n 个数字的全排列
  2. ∏ i = 1 n a i , a i \prod\limits_{i=1}^na_{i,a_i} i=1nai,ai要算出来
  3. 把前面算出来的加起来,得出结果

       一切的一切开始前,我们看看要那些变量,先看全局变量(似乎都可以是全局变量)

int a[10000];		// 存放那个序列
int n;				// 矩阵的阶数
int lixu = 0;		// 逆序的个数(拼音不好请勿介意!)
double ** p;		// 动态二维数组
int ans = 0;		// 结果

       首先,要生成全排首先要有一个序列,我们用数组来代替

	cin >> n;
    for (int i = 0; i < n; i++)
    {
        a[i] = i;
    }   //生成数组 : 0,1,2,3,4,5,6,7,8......

       然后给我去看课本135面,课本是以 k k k 个字母的全排列(这个应该会吧,直接套就完事了)不会的看书去doge。

       虽然但是还是说一下,举个例子,我们要输出字母ABCDE的全排列,有下面几种可能。
注:括号后面的方法都是基于ABCDE这个序列进行变换

  • 字母A跟着后面的“BCDE”的全排列(方法:A与A自己交换,后面的递归,输出全排)
  • 字母B跟着后面的“ACDE”的全排列(方法:A与B交换,后面的递归,输出全排)
  • 字母C跟着后面的“ABDE”的全排列(方法:A与C交换,后面的递归,输出全排)
  • 字母D跟着后面的“ABCE”的全排列(方法:A与D交换,后面的递归,输出全排)
  • 字母E跟着后面的“ABCD”的全排列(方法:A与E交换,后面的递归,输出全排)

       **递归函数的核心是终止的条件!!!**不管是什么递归,一定要写终止条件!,然后再递归

// 这个函数用来生成全排列,k表示已经排列好的元素个数,使用方法为Allsequenc_Generator(0);
// 递归终止的条件是 k = n; 这说明一组排列已经生成啦
void Allsequenc_Generator(int k) 
{
    if (k == n)
    {
        DataPocess();	// 课本上是到这里递归停止,输出结果,我这里相当于全排生成完毕,要开始计算
        				// 考虑到是全局变量,没有必要传递什么指针啥的,短平快
    }
    else
        for (int i = k; i < n; i++)
        {
            swap(i, k);						
            Allsequenc_Generator(k + 1);
            swap(i, k);							// 这一段全是抄课本的,原理就是交换
        }
}

       然后是main函数的剩下部分,包括数据读取,动态数组的回收空间。

	p = new double *[n];		// 空间的申请 p是二级指针,所以指向一级指针的数组首位!
    
    for (int i = 0; i < n; i++)
    {
        p[i] = new double[n];	// 空间的申请 p[i]是一级指针,所以指向0级(可能是这样?)数组
    }

    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            cin >> p[i][j];		// 读取数据不多说
        }
    }


    Allsequenc_Generator(0);	// 产生全排,每产生一个全排就把数据处理掉
    cout << ans;				// 输出结果

    for (int i = 0; i < n; i++)
        delete[] p[i];			// 回收空间,先通过一级指针p[i]回收他指向的数组
    delete[] p;					// 回收空间,通过二级指针p回收他指向的一级指针数组		

    // system("pause");
    return 0;

       问题:逆序数怎么求?最呆的方法(还是可以过评测机)

	lixu = 0;
    for (int x = 0; x < n - 1; x++)
    {
        for (int y = x + 1; y < n; y++)
        if (a[x] > a[y])
       	lixu++;
    }

       改进的方法,来自线代老师爱猫狂人!这么解释,对于一个单调递增的序列 如1,2,3,4,5,任意交换里面的两个元素,逆序数奇偶性一定变 。
       那太好了,只要我们在swap函数里面动一下手脚!

void swap(int i, int k)
{
    if (i != k)         
        lixu++;		// 排除自己和自己交换,只要是i k不同,交换后逆序加一!奇偶性调整完成!
    int temp = a[i];
    a[i] = a[k];
    a[k] = temp;
}

       所以有人可能会问,逆序这个变量反应了什么?反映的是真正逆序的奇偶性,而不是真正逆序的和,毕竟最终只是一个负一的次方呢2333。

void DataPocess()
{
        int temptimes = 1;
        for (int j = 0; j < n; j++)
        {
                temptimes = temptimes * p[j][a[j]];
        }					// 全部乘起来!
        if (lixu % 2 == 0)	// 判断奇偶 偶数就加,反之就减
        {
            ans = ans + temptimes;
        }	
        if (lixu % 2 == 1)
        {
            ans = ans - temptimes;
        }
}

       完整的AC代码:注释掉的是临时输出使用

#include <iostream>
using namespace std;

int a[10000];
int n;
int lixu = 0;
double ** p;
int ans = 0;

void DataPocess()
{
    // lixu = 0;
    // for (int x = 0; x < n - 1; x++)
    // {
    //     for (int y = x + 1; y < n; y++)
    //         if (a[x] > a[y])
    //             lixu++;
    // }
        int temptimes = 1;
        for (int j = 0; j < n; j++)
        {
                temptimes = temptimes * p[j][a[j]];
        }
        // cout << "temptimes"  << temptimes << endl;
        if (lixu % 2 == 0)
        {
            // cout << "temptimes: + "  << temptimes << endl;
            ans = ans + temptimes;
        }
        if (lixu % 2 == 1)
        {
            // cout << "temptimes: - "  << temptimes << endl;
            ans = ans - temptimes;
        }
    
}

void swap(int i, int k)
{
    if (i != k)         
        lixu++;
    int temp = a[i];
    a[i] = a[k];
    a[k] = temp;
}

void Allsequenc_Generator(int k)
{
    if (k == n)
    {
        DataPocess();
    }
    else
        for (int i = k; i < n; i++)
        {
            swap(i, k);
            Allsequenc_Generator(k + 1);
            swap(i, k);
        }
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i++)
    {
        a[i] = i;
    }   //生成数组 : 0,1,2,3,4,5,6,7,8......
    

    p = new double *[n];
    
    for (int i = 0; i < n; i++)
    {
        p[i] = new double[n];
    }

    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            cin >> p[i][j];
        }
    }


    Allsequenc_Generator(0);
    cout << ans;

    for (int i = 0; i < n; i++)
        delete[] p[i];
    delete[] p;

    // system("pause");
    return 0;
}

还是附上评测记录,时间较长的是用的for循环求逆序,短的是改进后的结果。没想到吧优化明显!

评测编号用户题目名称评测状态运行时间内存语言提交时间
490551033. 行列式求值Accepted305ms32960KiBC++Jul-20-2021 17:44:06
490541033. 行列式求值Accepted1185ms32960KiBC++Jul-20-2021 17:40:11
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值