【Spark】SparkStreaming缓存操作,SparkStreaming程序的部署、升级与维护、优化建议(十一)

SparkStreaming缓存操作

SparkStreaming缓存操作
SparkStreaming的缓存,说白了就是DStream的缓存,DStream的缓存就只有一个方面,DStream对应的RDD的缓存,RDD如何缓存?rdd.persist(),所以DStream的缓存说白了就是RDD的缓存,使用persist()指定,及其需要指定持久化策略,大多算子默认情况下,持久化策略为MEMORY_ONLY_SER。
SparkStreaming的checkpoint机制
每一个Spark Streaming应用,正常来说,都是要7*24小时运转的,这就是实时计算程序的特点。因为要持续不断的对数据进行计算。因此,对实时计算应用的要求,应该是必须要能够对与应用程序逻辑无关的失败,进行容错。
如果要实现这个目标,Spark Streaming程序就必须将足够的信息checkpoint到容错的存储系统上,从而让它能够从失败中进行恢复。有两种数据需要被进行checkpoint:
元数据checkpoint——将定义了流式计算逻辑的信息,保存到容错的存储系统上,比如HDFS。当运行Spark Streaming应用程序的Driver进程所在节点失败时,该信息可以用于进行恢复。元数据信息包括了:
1)配置信息——创建Spark Streaming应用程序的配置信息,比如SparkConf中的信息。
2)DStream的操作信息——定义了Spark Streaming应用程序的计算逻辑的DStream操作信息。
3)未处理的batch信息——那些job正在排队,还没处理的batch信息。
数据checkpoint——将实时计算过程中产生的RDD的数据保存到可靠的存储系统中。
对于一些将多个batch的数据进行聚合的,有状态的transformation操作,这是非常有用的。在这种transformation操作中,生成的RDD是依赖于之前的batch的RDD的,这会导致随着时间的推移,RDD的依赖链条变得越来越长。
要避免由于依赖链条越来越长,导致的一起变得越来越长的失败恢复时间,有状态的transformation操作执行过程中间产生的RDD,会定期地被checkpoint到可靠的存储系统上,比如HDFS。从而削减RDD的依赖链条,进而缩短失败恢复时,RDD的恢复时间。
总结:元数据checkpoint主要是为了从driver失败中进行恢复;而RDD checkpoint主要是为了使用到有状态的transformation操作时,能够在其生产出的数据丢失时,进行快速的失败恢复。
启动checkpoint
1)启动方式一:
使用了有状态的transformation操作——比如updateStateByKey,或者reduceByKeyAndWindow操作,被使用了,那么checkpoint目录要求是必须提供的,也就是必须开启checkpoint机制,从而进行周期性的RDD checkpoint。
要保证可以从Driver失败中进行恢复——元数据checkpoint需要启用,来进行这种情况的恢复。
要注意的是,并不是说,所有的Spark Streaming应用程序,都要启用checkpoint机制,如果即不强制要求从Driver失败中自动进行恢复,又没使用有状态的transformation操作,那么就不需要启用checkpoint。事实上,这么做反而是有助于提升性能的。
2)启动方式二:
对于有状态的transformation操作,启用checkpoint机制,定期将其生产的RDD数据checkpoint,是比较简单的。可以通过配置一个容错的、可靠的文件系统(比如HDFS)的目录,来启用checkpoint机制,checkpoint数据就会写入该目录。使用StreamingContext的checkpoint()方法即可。然后,你就可以放心使用有状态的transformation操作了。
如果为了要从Driver失败中进行恢复,那么启用checkpoint机制,是比较复杂的。需要改写Spark Streaming应用程序。
当应用程序第一次启动的时候,需要创建一个新的StreamingContext,并且调用其start()方法,进行启动。当Driver从失败中恢复过来时,需要从checkpoint目录中记录的元数据中,恢复出来一个StreamingContext。
比如如下代码:

def createFuc():StreamingContext = {
    val ssc = new StreamingContext(conf, batchInterval)
    ssc.checkpoint(checkpoint)
    //业务逻辑
   	.....
    ssc
}
val ssc = StreamingContext.getOrCreate(checkpoint, createFunc)
object CheckpointWithKafkaDirectOps {
    def main(args: Array[String]): Unit = {
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.spark_project").setLevel(Level.WARN)
        val conf = new SparkConf()
            .setAppName("CheckpointWithKafkaDirectOps")
            .setMaster("local")
        val duration = Seconds(2)
        val checkpoint = "file:///E:/data/monitored/chk"
        def createFunc():StreamingContext = {
            val ssc = new StreamingContext(conf, duration)
            ssc.checkpoint(checkpoint)
            val kafkaParams = Map[String, Object](
                "bootstrap.servers" -> "hadoop101:9092,hadoop102:9092,hadoop103:9092",
            "key.deserializer" -> classOf[StringDeserializer],
                "value.deserializer" -> classOf[StringDeserializer],
                "group.id" -> "spark-kafka-grou-0817",
                "auto.offset.reset" -> "earliest",
                "enable.auto.commit" -> "false"
            )
            val topics = "spark".split(",").toSet
            val messages:InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent,
                ConsumerStrategies.Subscribe(topics, kafkaParams))
            messages.foreachRDD((rdd, bTime) => {
                if(!rdd.isEmpty()) {
                    println("num: " + rdd.getNumPartitions)
                    val offsetRDD = rdd.asInstanceOf[HasOffsetRanges]
                    val offsetRanges = offsetRDD.offsetRanges
                    for(offsetRange <- offsetRanges) {
                        val topic = offsetRange.topic
                        val partition = offsetRange.partition
                        val fromOffset = offsetRange.fromOffset
                        val untilOffset = offsetRange.untilOffset println(s"topic:${topic}\tpartition:${partition}\tstart:${fromOffset}\tend:${untilOffset}")
                    }
                    rdd.count()
                }
            })
            ssc
        }
        //创建或者恢复出来一个StreamingContext
        val ssc = StreamingContext.getOrCreate(checkpoint, createFunc)
        ssc.start()
        ssc.awaitTermination()
    }
}

当程序对应的driver失败进行恢复的时候,上述的修改,只是完成了第一步,还有第二步,第三步要走。
第二步,修改spark-submit脚本中的参数:–deploy-mode cluster。
第三步,修改spark-submit脚本中的参数:–supervise。
DriverHA
DriverHA的原理:由于流计算系统是长期运行、且不断有数据流入,因此其Spark守护进程(Driver)的可靠性至关重要,它决定了Streaming程序能否一直正确地运行下去。
在这里插入图片描述

图-21 checkpoint数据
Driver实现HA的解决方案就是将元数据持久化,以便重启后的状态恢复。如图一21所示,Driver持久化的元数据包括:
1)蓝色的箭头表示接收的数据,接收器把数据流打包成块,存储在executor的内存中,如果开启了WAL,将会把数据写入到存在容错文件系统的日志文件中。
2)青色的箭头表示提醒driver,接收到的数据块的元信息发送给driver中的StreamingContext,这些元数据包括:executor内存中数据块的引用ID和日志文件中数据块的偏移信息。
3)红色箭头表示处理数据,每一个批处理间隔,StreamingContext使用块信息用来生成RDD和jobs.SparkContext执行这些job用于处理executor内存中的数据块。
4)黄色箭头表示checkpoint这些计算,以便于恢复。流式处理会周期的被checkpoint到文件中。
恢复计算(图-22中的橙色箭头):使用Checkpoint数据重启driver,重新构造上下文并重启接收器。恢复元数据块(图2中的绿色箭头):恢复Block元数据。
在这里插入图片描述

图-22 从checkpoint恢复数据
恢复未完成的作业(图-22中的红色箭头):使用恢复出来的元数据,再次产生RDD和对应的job,然后提交到Spark集群执行。
通过如上的数据备份和恢复机制,Driver实现了故障后重启、依然能恢复Streaming任务而不丢失数据,因此提供了系统级的数据高可靠。
1)DriverHA的配置:

#!/bin/sh
SPARK_HOME=/export/servers/spark
$SPARK_HOME/bin/spark-submit \
--master spark://hadoop101:7077 \
--deploy-mode cluster \
--class chapter6.SparkStreamingDriverHAOps \
--executor-memory 600M \
--executor-cores 2 \
--driver-cores 1 \
--supervise \
--total-executor-cores 3 \
hdfs://hadoop101:8020/wordcount/input/wc.jar \
2 hadoop101 9999 \
hdfs://hadoop101:8020/wordcount/input/word1.txt

2)DriverHA的实现:

object SparkStreamingDriverHAOps {
    def main(args: Array[String]): Unit = {
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.spark_project").setLevel(Level.WARN)
        if(args == null || args.length < 4) {
            System.err.println(
                """
                  |Parameter Errors! Usage: <batchInterval> <host> <port> <checkpoint>
                """.stripMargin)
            System.exit(-1)
        }
        val Array(batchInterval, host, port, checkpoint) = args
        val conf = new SparkConf()
            .setAppName("SparkStreamingDriverHA")
            .setMaster("local[*]")
        def createFunc():StreamingContext = {
            val ssc = new StreamingContext(conf, Seconds(batchInterval.toLong))
            ssc.checkpoint(checkpoint)
            val lines:DStream[String] = ssc.socketTextStream(host, port.toInt)
            val pairs:DStream[(String, Int)] = lines.flatMap(_.split("\\s+")).map((_, 1))
            val usb:DStream[(String, Int)] = pairs
                .updateStateByKey((seq, option) => Option(seq.sum + option.getOrElse(0)))
            usb.print()
            ssc
        }
        val ssc = StreamingContext.getOrCreate(checkpoint, createFunc)
        ssc.start()
        ssc.awaitTermination()
    }
}

SparkStreaming程序的部署、升级与维护

Spark程序的部署
1)我们之前讲过的部署方式,一般都是直接往Spark standalone集群、yarn集群和mesos集群部署应用。
2)为executor配置充足的内存,因为Receiver接受到的数据,默认是要存储在Executor的内存中的,所以Executor必须配置足够的内存来保存接收到的数据。要注意的是,如果你要执行窗口长度为30分钟的窗口操作,那么Executor的内存资源就必须足够保存30分钟内的数据,因此内存的资源要求是取决于你执行的操作的。
3)配置checkpoint,如果你的应用程序要求checkpoint操作,那么就必须配置一个Hadoop兼容的文件系统(比如HDFS)的目录作为checkpoint目录。
4)配置driver的HA自动恢复,如果要让driver能够在失败时自动恢复,之前已经讲过,一方面,要重写driver程序,一方面,要在spark-submit中添加参数。
5)Driver HA机制两种方式:程序重写HA;借助Spark集群进行维护。
WAL(预写日志)
预写日志机制,简写为WAL,全称为Write Ahead Log。从Spark 1.2版本开始,就引入了基于容错的文件系统的WAL机制。如果启用该机制,Receiver接收到的所有数据都会被写入配置的checkpoint目录中的预写日志。这种机制可以让driver在恢复的时候,避免数据丢失,并且可以确保整个实时计算过程中,零数据丢失。
配置方式
1)StreamingContext 设置 checkpoint() 一个checkpoint目录。
2)spark.streaming.receiver.writeAheadLog.enable参数设置为true。
优化方式
然而,这种极强的可靠性机制,会导致Receiver的吞吐量大幅度下降,因为单位时间内,有相当一部分时间需要将数据写入预写日志。如果又希望开启预写日志机制,确保数据零损失,又不希望影响系统的吞吐量,那么可以创建多个输入DStream,启动多个Receiver。
建议,在启用了预写日志机制之后,推荐将复制持久化机制禁用掉,因为所有数据已经保存在容错的文件系统中了,不需要在用复制机制进行持久化,保存一份副本了。只要将输入DStream的持久化机制设置一下即可,persist(StorageLevel.MEMORY_AND_DISK_SER)。
Receiver
1)spark.streaming.receiver.maxRate和spark.streaming.kafka.maxRatePerPartition参数可以用来设置,前者设置普通Receiver,后者是Kafka Direct方式。
2)Spark 1.5中,对于Kafka Direct方式,引入了backpressure机制,从而不需要设置Receiver的限速,Spark可以自动估计Receiver最合理的接收速度,并根据情况动态调整。只要将spark.streaming.backpressure.enabled设置为true即可。
3)企业级内部使用场景一般都是Kafka Direct方式,优点:不用receiver,不会独占集群的一个cpu core;有backpressure自动调节接收速率的机制。
4)升级SparkStreaming应用程序在线上:
大家知道,线上的Spark Streaming应用程序都是7 * 24 * 30小时运行的。因此如果需要对正在运行的应用程序,进行代码的升级,那么有两种方式可以实现:
并行:也就是升级后的Spark应用程序与旧的Spark应用程序并行,当新的应用程序没有问题时,才可以将旧的替换掉。这种方式适合于客户单独拉取自己的数据。
必须有缓存系统保存数据才可以,启动新的应用程序。
Checkpoint目录不能共享
注意:配置了driver自动恢复机制时,如果想要根据旧的应用程序的checkpoint信息,启动新的应用程序,是不可行的。需要让新的应用程序针对新的checkpoint目录启动,或者删除之前的checkpoint目录。
监控Spark应用程序:Spark Web UI会显示一个独立的streaming tab,会显示Receiver的信息,比如是否活跃,接收到了多少数据,是否有异常等;还会显示完成的batch的信息,batch的处理时间、队列延迟等。这些信息可以用于监控spark streaming应用的进度。
Spark UI中两个格外重要的统计指标
1)处理时间——每个batch的数据的处理耗时—监控每个batch是否延迟。
2)调度延迟——一个batch在队列中阻塞住,等待上一个batch完成处理的时间。
如果batch的处理时间,比batch的间隔要长的话,而且调度延迟时间持续增长,应用程序不足以使用当前设定的速率来处理接收到的数据,此时,可以考虑增加batch的间隔时间。

SparkStreaming优化建议

设置合理的CPU
很多情况下Streaming程序需要的内存不是很多,但是需要的CPU要很多。在Streaming程序中,CPU资源的使用可以分为两大类:
1)用于接收数据。
2)用于处理数据。我们需要设置足够的CPU资源,使得有足够的CPU资源用于接收和处理数据,这样才能及时高效地处理数据。
关于接收数据的调优说明
1)通过网络接收数据时(比如Kafka、Flume、ZMQ、RocketMQ、RabbitMQ和ActiveMQ等),会将数据反序列化,并存储在Spark的内存中。
2)如果数据接收成为系统的瓶颈,那么可以考虑并行化数据接收。每一个输入DStream都会在某个Worker的Executor上启动一个Receiver,该Receiver接收一个数据流。因此可以通过创建多个输入DStream,并且配置它们接收数据源不同的分区数据,达到接收多个数据流的效果。
3)举例说明:一个接收4个Kafka Topic的输入DStream,可以被拆分为两个输入DStream,每个分别接收二个topic的数据。这样就会创建两个Receiver,从而并行地接收数据,进而提升吞吐量。多个DStream可以使用union算子进行聚合,从而形成一个DStream。然后后续的transformation算子操作都针对该一个聚合后的DStream即可。
4)使用inputStream.repartition()即可。这样就可以将接收到的batch,分布到指定数量的机器上,然后再进行进一步的操作。
5)数据接收并行度调优,除了创建更多输入DStream和Receiver以外,还可以考虑调节block interval(Spark Streaming接收器接收的数据在存储到Spark之前被分块为数据块的时间间隔)。
6)设置合理的并行度,如果在计算的任何stage中使用的并行task的数量没有足够多,那么集群资源是无法被充分利用的。举例来说,对于分布式的reduce操作,比如reduceByKey和reduceByKeyAndWindow,默认的并行task的数量是由spark.default.parallelism参数决定的。你可以在reduceByKey等操作中,传入第二个参数,手动指定该操作的并行度,也可以调节全局的spark.default.parallelism参数。
该参数说的是,对于那些shuffle的父RDD的最大的分区数据。对于parallelize或者textFile这些输入算子,因为没有父RDD,所以依赖于ClusterManager的配置。如果是local模式,该默认值是local[x]中的x;如果是mesos的细粒度模式,该值为8,其它模式就是Math.max(2, 所有的excutor上的所有的core的总数)。
序列化调优说明
数据序列化造成的系统开销可以由序列化格式的优化来减小。在流式计算的场景下,有两种类型的数据需要序列化。
1)输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2。这意味着,数据被序列化为字节从而减小GC开销,并且会复制以进行executor失败的容错。因此,数据首先会存储在内存中,然后在内存不足时会溢写到磁盘上,从而为流式计算来保存所有需要的数据。这里的序列化有明显的性能开销——Receiver必须反序列化从网络接收到的数据,然后再使用Spark的序列化格式序列化数据。
2)流式计算操作生成的持久化RDD:流式计算操作生成的持久化RDD,可能会持久化到内存中。例如,窗口操作默认就会将数据持久化在内存中,因为这些数据后面可能会在多个窗口中被使用,并被处理多次。然而,不像Spark Core的默认持久化级别,StorageLevel.MEMORY_ONLY,流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER ,默认就会减小GC开销。
batchInterval
如果想让一个运行在集群上的Spark Streaming应用程序可以稳定,它就必须尽可能快地处理接收到的数据。换句话说,batch应该在生成之后,就尽可能快地处理掉。对于一个应用来说,这个是不是一个问题,可以通过观察Spark UI上的batch处理时间来定。batch处理时间必须小于batch interval时间。
在构建StreamingContext的时候,需要我们传进一个参数,用于设置Spark Streaming批处理的时间间隔。Spark会每隔batchDuration时间去提交一次Job,如果你的Job处理的时间超过了batchDuration的设置,那么会导致后面的作业无法按时提交,随着时间的推移,越来越多的作业被拖延,最后导致整个Streaming作业被阻塞,这就间接地导致无法实时处理数据,这肯定不是我们想要的。
另外,虽然batchDuration的单位可以达到毫秒级别的,但是经验告诉我们,如果这个值过小将会导致因频繁提交作业从而给整个Streaming带来负担,所以请尽量不要将这个值设置为小于500ms。在很多情况下,设置为500ms性能就很不错了。
那么,如何设置一个好的值呢?我们可以先将这个值设置为比较大的值(比如10S),如果我们发现作业很快被提交完成,我们可以进一步减小这个值,直到Streaming作业刚好能够及时处理完上一个批处理的数据,那么这个值就是我们要的最优值。
内存调优
内存调优的另外一个方面是垃圾回收。对于流式应用来说,如果要获得低延迟,肯定不想因为JVM垃圾回收导致的长时间延迟。有很多参数可以帮助降低内存使用和GC开销:
1)DStream的持久化:正如在“数据序列化调优”一节中提到的,输入数据和某些操作生产的中间RDD,默认持久化时都会序列化为字节。与非序列化的方式相比,这会降低内存和GC开销。使用Kryo序列化机制可以进一步减少内存使用和GC开销。进一步降低内存使用率,可以对数据进行压缩,由spark.rdd.compress参数控制(默认false)。
2)清理旧数据:默认情况下,所有输入数据和通过DStream transformation操作生成的持久化RDD,会自动被清理。Spark Streaming会决定何时清理这些数据,取决于transformation操作类型。例如,你在使用窗口长度为10分钟内的window操作,Spark会保持10分钟以内的数据,时间过了以后就会清理旧数据。但是在某些特殊场景下,比如Spark SQL和Spark Streaming整合使用时,在异步开启的线程中,使用Spark SQL针对batch RDD进行执行查询。那么就需要让Spark保存更长时间的数据,直到Spark SQL查询结束。可以使用streamingContext.remember()方法来实现。
3)CMS垃圾回收器:使用并行的mark-sweep垃圾回收机制,被推荐使用,用来保持GC低开销。虽然并行的GC会降低吞吐量,但是还是建议使用它,来减少batch的处理时间(降低处理过程中的gc开销)。

  • 17
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZikH~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值