推荐系统中的可解释用户留存优化框架:论文精读与方法解析
在推荐系统的研究与实践中,我们长期以来关注点击率(CTR)、转化率(CVR)、曝光量(Impression)等短期行为指标。然而,随着用户增长放缓和竞争加剧,平台更希望达成的目标是:用户是否愿意持续回来使用系统,也就是“用户留存(User Retention)”。
本文精读 RecSys 2023 最佳短文奖论文《Interpretable User Retention Modeling in Recommendation》,介绍其提出的 IURO 框架,并结合我的理解进行理论与方法拆解。
一、用户留存优化为何重要?
传统推荐系统追求即时反馈指标,但这些指标并不能反映用户的长期满意度。
- 📉 用户流失是平台衰退的早期信号
- 📈 用户留存是平台生命周期与内容生态健康度的关键指标
尤其在教育、视频、社交平台中,用户的长期回访价值远远高于单次点击价值。
二、IURO:可解释的用户留存优化框架
论文提出了一种用于推荐系统的可解释留存优化方法,名为:
IURO(Interpretable User Retention-Oriented Optimization)
目标是:
- 不仅预测用户是否会回来(留存),还要解释为什么回来
- 找出促成用户留存的“关键内容” → aha items
三、IURO 的模型结构(两大核心模块)
1. 对比多实例学习模块(CMIL)
- 将用户行为序列视为多个“行为实例”
- 使用多实例学习(MIL)方式,为每个行为分配一个“留存贡献分数”
- 通过 对比学习,强化高留存行为与低留存行为的区分度
2. 因果合理性多实例学习模块(RMIL)
- 分析用户“未来行为”,学习未来内容的偏好分布
- 与历史行为匹配,用于指导模型学习“哪些历史行为更可能促成未来回访”
- 引入 JS 散度损失,将 CMIL 和 RMIL 的行为分布对齐,增强因果一致性
四、实验结果与效果分析
数据集
- ZhihuRec-1M:知乎匿名用户行为数据集
- 工业级数据集:真实线上推荐系统行为日志(百万级)
模型表现(AUC)
模型 | ZhihuRec | Industry |
---|---|---|
Base MLP | 0.7180 | 0.6827 |
IURO-MIL | 0.8269 | 0.7209 |
IURO-CMIL+MSS | 0.8437 | 0.7291 |
在线实验(A/B 测试)
指标 | 实验组提升 |
---|---|
次日留存率 | +0.76% |
三日留存率 | +0.65% |
平均点击数 | +0.21 |
平均停留时长 | +1.32% |
说明:IURO 能有效提升用户留存而不损害短期指标表现。
五、模型可解释性分析亮点
- 高留存用户行为中,出现频率最多的内容为“积极/高质量/正向价值”主题
- 留存高的用户,其次日点击内容与初次“aha item”重合度高达 64.66%
- 模型能识别“导致用户回来”的行为,并在序列中赋予更高 attention 分数
六、论文总结与启发
本文带来了三点重要启示:
- 用户留存应作为独立优化目标建模,不能只依赖点击等间接指标
- 行为解释性对留存建模非常关键,有助于设计更合理推荐策略
- 未来行为可以作为反向信号监督历史行为建模
七、参考链接
- 论文原文:ACM RecSys 2023
- 官方代码:GitHub - dinry/IURO