推荐系统用户留存优化——论文阅读《Interpretable User Retention Modeling in Recommendation》

推荐系统中的可解释用户留存优化框架:论文精读与方法解析

在推荐系统的研究与实践中,我们长期以来关注点击率(CTR)、转化率(CVR)、曝光量(Impression)等短期行为指标。然而,随着用户增长放缓和竞争加剧,平台更希望达成的目标是:用户是否愿意持续回来使用系统,也就是“用户留存(User Retention)”。

本文精读 RecSys 2023 最佳短文奖论文《Interpretable User Retention Modeling in Recommendation》,介绍其提出的 IURO 框架,并结合我的理解进行理论与方法拆解。


一、用户留存优化为何重要?

传统推荐系统追求即时反馈指标,但这些指标并不能反映用户的长期满意度

  • 📉 用户流失是平台衰退的早期信号
  • 📈 用户留存是平台生命周期与内容生态健康度的关键指标

尤其在教育、视频、社交平台中,用户的长期回访价值远远高于单次点击价值


二、IURO:可解释的用户留存优化框架

论文提出了一种用于推荐系统的可解释留存优化方法,名为:

IURO(Interpretable User Retention-Oriented Optimization)

目标是:

  • 不仅预测用户是否会回来(留存),还要解释为什么回来
  • 找出促成用户留存的“关键内容” → aha items

三、IURO 的模型结构(两大核心模块)

在这里插入图片描述

1. 对比多实例学习模块(CMIL)

  • 将用户行为序列视为多个“行为实例”
  • 使用多实例学习(MIL)方式,为每个行为分配一个“留存贡献分数”
  • 通过 对比学习,强化高留存行为与低留存行为的区分度

2. 因果合理性多实例学习模块(RMIL)

  • 分析用户“未来行为”,学习未来内容的偏好分布
  • 与历史行为匹配,用于指导模型学习“哪些历史行为更可能促成未来回访”
  • 引入 JS 散度损失,将 CMIL 和 RMIL 的行为分布对齐,增强因果一致性

四、实验结果与效果分析

数据集

  • ZhihuRec-1M:知乎匿名用户行为数据集
  • 工业级数据集:真实线上推荐系统行为日志(百万级)

模型表现(AUC)

模型ZhihuRecIndustry
Base MLP0.71800.6827
IURO-MIL0.82690.7209
IURO-CMIL+MSS0.84370.7291

在线实验(A/B 测试)

指标实验组提升
次日留存率+0.76%
三日留存率+0.65%
平均点击数+0.21
平均停留时长+1.32%

说明:IURO 能有效提升用户留存而不损害短期指标表现。


五、模型可解释性分析亮点

  • 高留存用户行为中,出现频率最多的内容为“积极/高质量/正向价值”主题
  • 留存高的用户,其次日点击内容与初次“aha item”重合度高达 64.66%
  • 模型能识别“导致用户回来”的行为,并在序列中赋予更高 attention 分数

六、论文总结与启发

本文带来了三点重要启示:

  1. 用户留存应作为独立优化目标建模,不能只依赖点击等间接指标
  2. 行为解释性对留存建模非常关键,有助于设计更合理推荐策略
  3. 未来行为可以作为反向信号监督历史行为建模

七、参考链接


💬 如果你对推荐系统中的长期优化、留存建模、可解释推荐感兴趣,欢迎点赞+评论+收藏,我们一起深入讨论!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值