2. 情感分类与朴素贝叶斯

首先我们先回顾下理论部分,本文依然采用NLTK中的twitter corpus进行情感分类的二分类:positive和negative。

在inference时需要计算 P ( p o s ) P ( n e g ) ∏ i = 0 m P ( w i ∣ p o s ) P ( w i ∣ n e g ) \frac{P(pos)}{P(neg)}\prod_{i=0}^m\frac{P(w_i|pos)}{P(w_i|neg)} P(neg)P(pos)i=0mP(wineg)P(wipos)(定义 r a t i o = P ( w i ∣ P o s ) P ( w i ∣ N e g ) ratio=\frac{P(w_i|Pos)}{P(w_i|Neg)} ratio=P(wiNeg)P(wiPos),如果>1则该条tweet为positive,=1则为中性,<1则为negative)。
-

但是句子长度越长导致计算下溢,我们引入 l o g log log计算: λ ( w ) = l o g P ( w i ∣ P o s ) P ( w i ∣ N e g ) \lambda(w)=log\frac{P(w_i|Pos)}{P(w_i|Neg)} λ(w)=logP(wiNeg)P(wiPos)。因此。最后的计算公式变成 l o g ( P ( p o s ) P ( n e g ) ∏ i = 0 m P ( w i ∣ p o s ) P ( w i ∣ n e g ) ) = l o g P ( p o s ) P ( n e g ) + ∑ i = 0 m l o g P ( w i ∣ p o s ) P ( w i ∣ n e g ) = l o g p r i o r + ∑ i = 0 m l o g l i k e l i h o o d = l o g p r i o r + ∑ i = 0 m λ log(\frac{P(pos)}{P(neg)}\prod_{i=0}^m\frac{P(w_i|pos)}{P(w_i|neg)}) =log\frac{P(pos)}{P(neg)} + \sum_{i=0}^mlog\frac{P(w_i|pos)}{P(w_i|neg)} =logprior + \sum_{i=0}^{m}loglikelihood=logprior + \sum_{i=0}^{m}\lambda log(P(neg)P(pos)i=0mP(wineg)P(wipos))=logP(neg)P(pos)+i=0mlogP(wineg)P(wipos)=logprior+i=0mloglikelihood=logprior+i=0mλ。(如果>0则该条tweet为positive,=0则为中性,<0则为negative。)
在这里插入图片描述
所以总结下整个过程大致为:获取数据集、预处理、计算 f r e q ( w i , c l a s s ) freq(w_i,class) freq(wi,class),计算 r a t i o ratio ratio,计算 λ \lambda λ,计算 l o g p r i o r logprior logprior

具体代码实现见:GitHub源码

错误分析

预处理时移除了标点符号
预处理时忽略了否定
忽略了词顺序
讽刺委婉的表达

总结

朴素贝叶斯(NB)基于条件独立性假设和语料库中的词频来进行实现。一方面,朴素贝叶斯是一个非常简单的模型,因为它不需要设置自定义任何参数;另一方面,朴素贝叶斯也有如下问题。

  • NB假设一段文本中的word相互独立,但在现实中往往不是这样。这会导致单个word的估计值低于或高于真实值。
    在这里插入图片描述

在左图中,“sunny”和“hot”似乎是相互关联并且一定程度上和“desert”相关。而NB会给右图中中的word filling任务中“spring, summer, fall, winter”四个候选词相等的概率。显然这是不合理的。

  • NB的另一个问题是依赖训练集的分布。一个好的数据集应该包含相同比例的正例和负例。大多数可用的标注数据集都是人为平衡的。但在现实的推文流中,发送正面推文的频率大于负面推文的频率。原因之一是负面推文可能包含平台禁止或用户忽略的内容。也就是现实中的数据集会有更多噪声。

总结就是朴素贝叶斯的独立性假设很难得到保证,但是尽管如此该模型在某些情况下仍然运行良好。对于模型的训练,需要平衡训练数据集中正例和负例的相对频率,以便提供准确的结果。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值