- 博客(4)
- 收藏
- 关注
原创 人工智能-作业4:CNN - 卷积
一、概念 1.卷积 对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。 2.卷积核 卷积核就是滤波矩阵,是做内积运算的对象,决定了滑动窗口的大小和范围。 3.多通道 输入图像的通道数根据图片特性和自己需求自己确定,输入图像的通道决定了卷积核的通道,卷积核的个数又决定了特征图的通道数。 4.特征图 图...
2022-05-16 12:38:42
710
原创 人工智能-作业3:例题程序复现 PyTorch版
一、使用pytorch复现课上例题。 import torch x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3]) y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07]) print("=====输入值:x1, x2;真实输出值:y1, y2=====") print(x1, x2, y1, y2) w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0.2])
2022-05-08 21:06:04
782
原创 人工智能-作业2:例题程序复现
所谓反向传播,就是计算梯度的方法。 假设输入a=2,b=1,在这种情况下,我们很容易求出相邻节点之间的偏导关系. 利用链式法则: 和 的值等于从a到e的路径上的偏导值的乘积,而的值等于从b到e的路径1(b-c-e)上的偏导值的乘积加上路径2(b-d-e)上的偏导值的乘积。也就是说,对于上层节点p和下层节点q,要求得,需要找到从q节点到p节点的所有路径,并且对每条路径,求得该路径上的所有偏导数之乘积,然后将所有路径的 “乘积” 累加起来才能得到的值。 这种情况下偏导很容易求得,因为...
2022-05-01 18:53:21
777
原创 人工智能作业1:Pytorch实现反向传播
1、安装pycharm,配置好python开发环境 安装教程参考:http://t.csdn.cn/dDZcH 这个是python的安装教程:http://t.csdn.cn/UVAym 安装完成界面为: 2、安装pytorch 安装教程参考:http://t.csdn.cn/632hU 在安装教程中遇到了以下问题: 参考http://t.csdn.cn/egUUr 参考这个解决了问题 安装成功界面为: ...
2022-05-01 13:38:31
1101
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人