- 博客(24)
- 资源 (1)
- 收藏
- 关注
原创 吃瓜Task05
第六章 支持向量机间隔与支持向量算法原理对偶问题软间隔与正则化算法原理支持向量回归间隔与支持向量算法原理从几何角度,对于线性可分数据集,支持向量机就是找距离正负样本都最远的超平面,相比于感知机,其解是惟一的,且不偏不倚,泛化性能更好。对偶问题软间隔与正则化算法原理支持向量回归...
2021-07-29 22:27:17
206
原创 吃瓜Task03
第四章 决策树决策树算法原理ID3决策树信息熵条件熵C4.5决策树CART决策树决策树算法原理逻辑:一堆if else 语句的组合几何:根据某种准测划分特征空间目的:将样本越分越纯自信息:I(X)=-logbp(x)信息熵(自信息的期望):度量随机变量X的不确定性,信息熵越大越不确定H(X)=E[I(X)]=-∑p(x)logbp(x)(离散型)ID3决策树信息熵信息熵可以度量随机变量X的不确定性,信息熵越大越不确定,可转换到度量样本集合纯度,信息熵越小样本集合的纯度越高。样本集
2021-07-22 23:01:38
470
原创 吃瓜Task02
第三章 线性模型线性模型基本形式问题描述函数形式向量形式线性回归一元线性回归多元线性回归对数几率回归线性判别分析多分类学习类别不平衡问题梯度下降法线性模型基本形式问题描述给定由d个属性描述的实例x=(X1;X2;X3;…Xd),其中xi是x在第i个属性上的取值,线性模型试图学得一个通过属性的线性组合来进行预测的函数。函数形式f(x)=w1x1+w2x2+…+wdxd+b向量形式f(x)=wTx+b其中w=(w1;w2;…;wd),w和b学得以后,模型就确定线性回归一元线性回归给定数据
2021-07-17 20:47:59
231
原创 吃瓜Task01
机器学习目录机器学习绪论模型评估与选择绪论含义:研究关于‘学习算法’的学问(通过计算 的手段,利用经验(数据)来改善系统自身的性能)。基本术语:数据集:(色泽=浅白,根蒂=蜷缩,敲声=浑浊),(色泽=乌黑,根蒂=蜷缩,敲声=浑浊)........示例/样本:每条记录(色泽=浅白,根蒂=蜷缩,敲声=浑浊)属性/特征:色泽,根蒂,敲声属性值:浅白,乌黑训练/学习:从数据中学得模型/学习器的过程。训练数据,训练样本,训练集,假设,真相/真实样例:((色泽
2021-07-13 19:48:09
155
原创 【FPGA】Quartus Prime 20.1 精简版下载安装教程记录
1.概述Quartus Prime是Intel(原Altera)公司的综合性PLD/FPGA开发软件,作为一种可编程逻辑的设计环境,由于其强大的设计能力和直观易用的接口,具有运行速度快,界面统一,功能集中,易学易用等特点,越来越受到数字系统设计者的欢迎。可利用原理图、结构框图、VerilogHDL、AHDL和VHDL完成电路描述,并将其保存为设计实体文件支持大量ALTERA的IP核,简化了设计的复杂性,加快了设计速度可使用SignalTap II逻辑分析工具进行嵌入式的逻辑分析支持Windows系
2021-03-21 17:33:34
13583
7
原创 机器学习(四)幸福感数据分析+预测
本文将按以下几个步骤描述,数据分析的流程:提出问题,给出分析目的;数据清洗与处理;数据分析及可视化;建立模型及预测分析;分析结果.1.提出问题,给出分析目的幸福感是一个古老而深刻的话题,是人类世代追求的方向。与幸福感相关的因素成千上万、因人而异,大如国计民生,小如路边烤红薯,都会对幸福感产生影响。在这些错综复杂的因素中,如何找到其中的共性,一窥幸福感的要义,进而提升人民的幸福感,能去帮助那些抑郁不开心的人,这是展开幸福感数据分析的目的。基于调查人群的相关特征,提出关于幸福感的几个问题如下
2020-12-29 09:41:20
5602
5
原创 机器学习算法(三):K近邻(k-nearest neighbors)初探
1 KNN的介绍和应用1.1 KNN的介绍kNN(k-nearest neighbors),中文翻译K近邻。我们常常听到一个故事:如果要了解一个人的经济水平,只需要知道他最好的5个朋友的经济能力, 对他的这五个人的经济水平求平均就是这个人的经济水平。这句话里面就包含着kNN的算法思想。示例 :如上图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。
2020-12-22 19:37:51
347
原创 机器学习算法(二): 朴素贝叶斯(Naive Bayes)下
莺尾花数据集–贝叶斯分类Step1: 库函数导入import warningswarnings.filterwarnings('ignore')import numpy as np# 加载莺尾花数据集from sklearn import datasets# 导入高斯朴素贝叶斯分类器from sklearn.naive_bayes import GaussianNBfrom sklearn.model_selection import train_test_splitStep2: 数据
2020-12-20 22:27:20
206
原创 机器学习算法(二): 朴素贝叶斯(Naive Bayes)
1.1朴素贝叶斯的介绍朴素贝叶斯算法(Naive Bayes, NB) 是应用最为广泛的分类算法之一。它是基于贝叶斯定义和特征条件独立假设的分类器方法。由于朴素贝叶斯法基于贝叶斯公式计算得到,有着坚实的数学基础,以及稳定的分类效率。NB模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。当年的垃圾邮件分类都是基于朴素贝叶斯分类器识别的。什么是条件概率,我们从一个摸球的例子来理解。我们有两个桶:灰色桶和绿色桶,一共有7个小球,4个蓝色3个紫色,分布如下图:从这7个球中,随机选择1个球是紫色的概
2020-12-18 22:15:56
207
1
原创 机器学习 第二部分:鸢尾花数据集逻辑回归实践
在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。step1## 基础函数库import numpy as np import pandas as pd## 绘图函数库import matplotlib.pyplot as pltimport seaborn as sns本次我们选择鸢花数据(iris
2020-12-16 21:10:58
920
原创 机器学习算法(一): 基于逻辑回归的分类预测
day01Part1 Demo实践Step1:库函数导入## 基础函数库import numpy as np ## 导入画图库import matplotlib.pyplot as pltimport seaborn as sns## 导入逻辑回归模型函数from sklearn.linear_model import LogisticRegressionStep2:模型训练##Demo演示LogisticRegression分类## 构造数据集x_fearures =
2020-12-14 21:21:19
331
1
原创 解决ERROR: Cannot uninstall ‘llvmlite‘. It is a distutils installed project and thus we cannot
解决ERROR: Cannot uninstall ‘llvmlite‘. It is a distutils installed project and thus we cannot**方法1:针对此问题则使用:pip install --ignore-installed llvmlite之后在安装我需要的librosa包,成功安装完成方法2:pip install librosa --user供大家参考...
2020-11-14 17:21:54
1867
1
原创 Linux命令概述
1、Linux的系统介绍「系统管理员:」root是Linux下的系统管理员普通用户登陆后可以用su- 切换为系统管理员关机命令shutdown -r now 现在重新启动计算机reboot 现在重新启动计算机logout shutdown -h now 立刻进行关机 注销cd … 回退到上移目录保存文件 ESC : wq!不保存 ESC :q!浏览当前目录下面的文件 ls清空桌面 clear「vi编辑器」vi编辑器是Linux下最有名的编辑器,也
2020-11-12 20:22:08
168
转载 ssh免密登录
两台虚拟机:ip:192.168.60.2,192.168.60.3系统:centos7前提(关闭防火墙或在防火墙中打开端口22)准备1、首先安装查看是否安装有sshrpm -qa | grep ssh1在这里插入图片描述看到上图所示 ,表示已经安装(未安装 )yum install -y openssl openssh-server12、安装成功,启动sshsystemctl start sshd.service13、设置ssh开机自启动:systemctl enable s
2020-11-06 17:29:24
380
原创 爬虫项目过程
爬虫项目项目名字request+selenium爬虫项目周期项目介绍爬了XXXXX,XXX,XXX,等网站,获取网站上的XXX,XXX,XXX,数据,每个月定时抓取XXX数据,使用该数据实现了XXX,XXX,XX,开发环境linux+pycharm+requests+mongodb+redis+crontab+scrapy_redis+ scarpy + mysql+gevent+celery+threading使用技术使用requests…把数据存储在m
2020-11-06 16:32:50
256
转载 2020-11-06
一、 概述1大数据简介1.1起源“大数据“,近几年来最火的词之一。虽然大数据这个词的正式产生也就10年左右,但对大数据分析却早就有之。早在互联网初期,就有很多公司通过计算机技术对大量的分析处理,比如各个浏览引擎。然而,大数据的真正提出却是源自2008.09.03 《Nature》专刊的一篇论文,紧接着,产业界也不断跟进,麦肯锡于2011.06 发布麦肯锡全球研究院报告,标志着大数据在产业界的真正兴起,随着白宫发布大数据研发法案,政府开始加入大数据的角逐。1.2定义既然大数据这么热,我们有必要了解一
2020-11-06 15:42:29
103
转载 虚拟机SSH免密登录
前言本文利用虚拟机中已有的一台Linux系统,克隆出另一台完全一样的Linux系统,并实现两台虚拟机之间的免密登录。这其中涉及到:防火墙的关闭、本地的域名解析配置、公钥私钥的生成等过程。一 使用虚拟机克隆Linux系统1 相关信息采用系统:Centos7 采用的虚拟机:VMware2 克隆之前与之后的Linux系统的信息展示克隆之前的Linux系统信息如下:主机名 IP地址 免密码登录用户名linux1 192.168.112.130 root克隆后的两台 Linux 服务器如下,我
2020-11-06 15:40:52
1845
翻译 Scrapy爬京东
总体概述从京东搜索框搜索进入手机进入页面,爬取内容分成两类,一类是手机的基本信息(标题、价格、链接),另一类是评论信息(用户名、评论内容、评论总数等),将信息爬取下来之后,进行数据处理,以方便显示和查看的格式保存下来。(1)爬虫爬虫又称网络蜘蛛、网络蚂蚁、网络机器人等,是一种按照一定的规则自动地抓取万维网信息的程序或者脚本,它的原理简单来讲就是通过选定入口URL,模拟HTTP请求,找到页面上想要获取的数据,然后保存下来。(2)Scrapy框架Scrapy是Python开发的一个快速、高层次的屏幕抓
2020-11-06 15:33:38
533
原创 day01重点
爬虫的概念爬虫是模拟浏览器发送请求,获取响应爬虫的流程url—>发送请求,获取响应—>提取数据—》保存发送请求,获取响应—>提取url爬虫要根据当前url地址对应的响应为准 ,当前url地址的elements的内容和url的响应不一样页面上的数据在哪里当前url地址对应的响应中其他的url地址对应的响应中比如ajax请求中js生成的部分数据在响应中全部通过js生成requests中解决编解码的方法response.content.dec
2020-11-05 18:00:36
73
原创 2020-11-05
值得看一遍](https://github.com/xiaoquantou/jd_spider)@用scrapy框架写的京东爬虫,可以抓取京东商品信息和评论
2020-11-05 17:58:37
123
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人