1068 万绿丛中一点红 (20 分)【有亿点点坑啊,回看回看】

题意概述:
对于计算机而言,颜色不过是像素点对应的一个 24 位的数值。现给定一幅分辨率为 M×N 的画,要求你找出万绿丛中的一点红,即有独一无二颜色的那个像素点,并且该点的颜色与其周围 8 个相邻像素的颜色差充分大。

输入格式:
输入第一行给出三个正整数,分别是 M 和 N(≤ 1000),即图像的分辨率;以及 TOL,是所求像素点与相邻点的颜色差阈值,色差超过 TOL 的点才被考虑。随后 N 行,每行给出 M 个像素的颜色值,范围在 [0, 2 24 2^{24} 224] ) 内。所有同行数字间用空格或 TAB 分开。

输出格式:
在一行中按照 (x, y): color 的格式输出所求像素点的位置以及颜色值,其中位置 x 和 y 分别是该像素在图像矩阵中的列、行编号(从 1 开始编号)。如果这样的点不唯一,则输出 Not Unique;如果这样的点不存在,则输出 Not Exist。

输入样例 1:

8 6 200
0 	 0 	  0 	   0	    0 	     0 	      0        0
65280 	 65280    65280    16711479 65280    65280    65280    65280
16711479 65280    65280    65280    16711680 65280    65280    65280
65280 	 65280    65280    65280    65280    65280    165280   165280
65280 	 65280 	  16777015 65280    65280    165280   65480    165280
16777215 16777215 16777215 16777215 16777215 16777215 16777215 16777215

结尾无空行

输出样例 1:

(5, 3): 16711680

结尾无空行

输入样例 2:

4 5 2
0 0 0 0
0 0 3 0
0 0 0 0
0 5 0 0
0 0 0 0

结尾无空行

输出样例 2:
Not Unique
结尾无空行

输入样例 3:

3 3 5
1 2 3
3 4 5
5 6 7

结尾无空行

输出样例 3:
Not Exist
结尾无空行

代码:

#include <stdio.h>
#include <string.h>
#include <math.h>

int B[16777217]={0},A[1000][1000]={0};//注意了,当数组开太大,放在函数中空间不足时,可以放在外面 

int main()
{
	int m=0,n=0,minus=0,special[3]={0,0,0},flag=0,len=0,num=0,i=0,j=0,k=0;
	char temp[20]={'\0'};
	scanf("%d %d %d\n",&m,&n,&minus);
	for (i=0;i<n;i++)
        for (j=0;j<m;j++)
        {
        	scanf("%s",temp);
        	len=strlen(temp);
        	for (k=0,num=0;k<len;k++)//这里别忘了清零num 
        	    num+=(temp[k]-'0')*pow(10,len-1-k);
        	for (k=0;k<len;k++)
        	    temp[k]=0;
        	A[i][j]=num;
        	B[num]++;/*在这儿使每个字符独一无二*/
        	if (j!=m-1)
			    scanf(" ");
			else if(i!=n-1)//这里注意输入再做限制 
			    scanf("\n");
		}
    for (i=0;i<n;i++)
    {
    	for (j=0;j<m;j++)//这里注意,坑死,以图像的算法,先列后行,且相邻点大于阈值是与的关系 
    	{
    		if (i==0&&j==0&&abs(A[i][j+1]-A[i][j])>minus&&abs(A[i+1][j+1]-A[i][j])>minus&&abs(A[i+1][j]-A[i][j])>minus&&B[A[i][j]]==1)
    		{
    		    special[0]=i+1;special[1]=j+1;special[2]=A[i][j];flag++;
			}
			else if (i==0&&j==m-1&&abs(A[i][j-1]-A[i][j])>minus&&abs(A[i+1][j-1]-A[i][j])>minus&&abs(A[i+1][j]-A[i][j])>minus&&B[A[i][j]]==1)
    		{
    		    special[0]=i+1;special[1]=j+1;special[2]=A[i][j];flag++;
			}
			else if (i==n-1&&j==m-1&&abs(A[i-1][j]-A[i][j])>minus&&abs(A[i-1][j-1]-A[i][j])>minus&&abs(A[i][j-1]-A[i][j])>minus&&B[A[i][j]]==1)
    		{
    		    special[0]=i+1;special[1]=j+1;special[2]=A[i][j];flag++;
			}
			else if (i==n-1&&j==0&&abs(A[i-1][j]-A[i][j])>minus&&abs(A[i-1][j+1]-A[i][j])>minus&&abs(A[i][j+1]-A[i][j])>minus&&B[A[i][j]]==1)
    		{
    		    special[0]=i+1;special[1]=j+1;special[2]=A[i][j];flag++;
			}
			else if (i==0&&j!=0&&j!=m-1\
			&&abs(A[i][j-1]-A[i][j])>minus&&abs(A[i+1][j-1]-A[i][j])>minus&&abs(A[i+1][j]-A[i][j])>minus\
			&&abs(A[i+1][j+1]-A[i][j])>minus&&abs(A[i][j+1]-A[i][j])>minus&&B[A[i][j]]==1)
    		{
    		    special[0]=i+1;special[1]=j+1;special[2]=A[i][j];flag++;
			}
			else if (j==m-1&&i!=0&&i!=m-1\
			&&abs(A[i-1][j]-A[i][j])>minus&&abs(A[i-1][j-1]-A[i][j])>minus&&abs(A[i][j-1]-A[i][j])>minus\
			&&abs(A[i+1][j-1]-A[i][j])>minus&&abs(A[i+1][j]-A[i][j])>minus&&B[A[i][j]]==1)
    		{
    		    special[0]=i+1;special[1]=j+1;special[2]=A[i][j];flag++;
			}
			else if (i==n-1&&j!=0&&j!=m-1\
			&&abs(A[i][j-1]-A[i][j])>minus&&abs(A[i-1][j-1]-A[i][j])>minus&&abs(A[i-1][j]-A[i][j])>minus\
			&&abs(A[i-1][j+1]-A[i][j])>minus&&abs(A[i][j+1]-A[i][j])>minus&&B[A[i][j]]==1)
    		{
    		    special[0]=i+1;special[1]=j+1;special[2]=A[i][j];flag++;
			}
			else if (j==0&&i!=0&&i!=n-1\
			&&abs(A[i-1][j]-A[i][j])>minus&&abs(A[i-1][j+1]-A[i][j])>minus&&abs(A[i][j+1]-A[i][j])>minus\
			&&abs(A[i+1][j+1]-A[i][j])>minus&&abs(A[i+1][j]-A[i][j])>minus&&B[A[i][j]]==1)
    		{
    		    special[0]=i+1;special[1]=j+1;special[2]=A[i][j];flag++;
			}
			else if (abs(A[i-1][j-1]-A[i][j])>minus&&abs(A[i-1][j]-A[i][j])>minus&&abs(A[i-1][j+1]-A[i][j])>minus\
			&&abs(A[i][j-1]-A[i][j])>minus&&abs(A[i][j+1]-A[i][j])>minus\
			&&abs(A[i+1][j-1]-A[i][j])>minus&&abs(A[i+1][j]-A[i][j])>minus&&abs(A[i+1][j+1]-A[i][j])>minus\
			&&i!=0&&i!=n-1&&j!=0&&j!=m-1&&B[A[i][j]]==1)
    		{
    		    special[0]=i+1;special[1]=j+1;special[2]=A[i][j];flag++;
			}
			if (flag>1)
		    {
		    	printf("Not Unique");return 0;
			} 
		}
	}
	if (flag==0)
	    printf("Not Exist");
	if (flag==1)
	    printf("(%d, %d): %d",special[1],special[0],special[2]);
	return 0;
}

Tips:
具体坑的地方都放在程序注释了…
看了其他人的解法,很多是if层层判断即八个方向分别控制来的,我就直接暴力把所有情况列出了

题外话:怪不得图像处理用matlab,矩阵操作多漂亮,这个本质感觉就是个阈值化操作,c语言这样两重循环整的太复杂了

提交结果:
提交结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的lab681

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值