最长公共子序列(LCS)-详解《动态规划》

问题描述:
        给定两个字符串,求解这两个字符串的最长公共子序列(和子串不同,可以不连续)。如:S1=(1.5,2.8.9.3.6),S2=(5,6,8,9.3.7,其最长公共子序列为(5,8.93),最长公共子序列长度为4。

解题:

第一步:分析问题的最优子结构性质

第二步:建立递推公式

 第三步:写代码

 

 输出最大子序列:

 

#include <iostream>
using namespace std;
#define N 100
int n,m;
char S1[N],S2[N];
int dp[N][N];
int b[N][N];//用于记录操作类型,方便回溯输出子序列 


//算法主体 
void LCSLength()
{
	for(int i=0;i<=n;i++)
		for(int j=0;j<=m;j++){
			dp[i][0]=0;
			dp[0][j]=0;
		}
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++){
			if(S1[i]==S2[j]){
				dp[i][j]=dp[i-1][j-1]+1;
				b[i][j]=1; //左上走  
			}
			else if(dp[i-1][j]>dp[i][j-1]){
				dp[i][j]=dp[i-1][j];
				b[i][j]=2;// 左走 
			}
			else{
				dp[i][j]=dp[i][j-1];
				b[i][j]=3;//上走 
			} 	
		}
}

//回溯输出函数 
void LCS(int i,int j)
{
	if(i==0||j==0) 
		return;
	if(b[i][j]==1){
		LCS(i-1,j-1);
		cout<<S1[i]<<" ";//S2[j]
	}
	else if(b[i][j]==2)
		LCS(i-1,j);
	else
		LCS(i,j-1);
}
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
		cin>>S1[i];
	cin>>m;
	for(int i=1;i<=m;i++)
		cin>>S2[i];
	LCSLength();
	cout<<"最长公共子序列长度是:"<<dp[n][m]<<endl;
	cout<<"最长公共子序列是:"; 
	LCS(n,m);//输出最大子序列 
	cout<<endl; 
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++)
			cout<<dp[i][j]<<" ";
		cout<<endl;
	}
	cout<<endl;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++)
			cout<<b[i][j]<<" ";
		cout<<endl;
	}
}

/*
7
1 5 2 8 9 3 6
6
5 6 8 9 3 7
*/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值