1.图(Graph)型结构:
什么是图型结构:由有穷且非空的顶点和顶点之间的边组成
通常表示为G(V,E) G表示一个图,V是图中顶点的集合,E是图中的边(顶点之间的关系)的集合
2.图的基本概念:
简单图:不存在顶点到自己的边、不存在重复的边,数据结构中只研究简单图
无向图:边是用(A,B)方式表示,表示顶点A到B是互通的
完全无向图:在无向图中,任意两个顶点之间都有边,在含有n个顶点的完全无向图中,有 n(n-1)/2 条边
有向图:边是用<A,B>方式表示,仅表示从A到B方向有边,在有向图中边也叫做弧,A是弧尾,B是弧头
完全有向图:在有向图中,任意两个顶点之间都有方向相反的弧,在含有n个顶点的完全有向图中,有 n(n-1)条弧
稀疏图:图中顶点多、边少,具体多少没有规范
稠密图:图中边的数量多
带权图:给图中的边赋予某种含义的数值,称之为该边的权重,图中所有边都有权重的图称为带权图,也称为网
度:依附于某个顶点的边的数量称为该顶点的度,在有向图中,又分出度(从该顶点出发的弧数量)、入度(其他顶点指向该顶点的弧数量)
路径:从某个顶点到另一个顶点之间经过的边,称为这两个顶点之间的路径
路径长度:两个顶点之间路径上的边的条目数
环:图中有顶点能经过边后回到自身,称该图有环
回路:专指有向图中,从某点出发,最终通过弧回到该点,称图中有回路,在回路上的顶点一定有出度、入度
顶点序列中存在不重复出现的路径称为简单路径
连通:如果顶点V1到顶点V2之间有路径,则称V1V2是连通的
连通图:任意两个顶点之间是连通的,n个顶点的图中,至少需要n-1条边才可能形成连通图,也称为生成树,如果给边配上权值,其中权重的代价最小的生成树,称为最小生成树
3.图的遍历方式:
深度优先遍历(DFS):
从某个顶点出发,一直往下一个顶点遍历,直到没有下一个顶点为止,再返回上一个顶点的其他路径继续进行深度优先,直到该出发顶点的所有深度优先遍历结束,同样的操作对每个顶点都进行一次
借助递归
广度优先遍历(BFS):
从某个顶点出发,把所有的下一层顶点都依次遍历,结束后再对该层每个顶点广度优先遍历,直到该出发顶点的广度优先遍历结束,同样的操作对每个顶点都进行一次
借助队列
DFS\BFS过程中会有顶点被重复遍历,需要记录是否被遍历过的标志位,防止结果重复
DFS\BFS 遍历结果不唯一,与顶点顺序有关
4.图的存储方式:
邻接矩阵:
用一个一维数组存储n个顶点,根据顶点数量使用n*n的二维数组来存储边
char V[n] = {A,B,C,D,E,F,G};
char E[n][n] =
A B C D E F G
A 0 1 0 1 0 0 0
B 1 0 0 0 1 0 0
C 1 0 0 0 0 0 0
D 0 1 0 0 0 0 1
E 0 0 0 0 0 0 0
F 0 0 0 1 0 0 1
G 0 0 0 0 1 0 0
在二维数组E[i][j]的值为1,则表示V[i]到V[j]之间有边
注意:由于不存在自己到自己的边,所以左对角线上的值一定为0
注意:如果存储的是无向图,那么一定沿左对角线对称,可以进行压缩成一维数组(参考矩阵的压缩)
优点:计算顶点的度、出度、入度都很方便
缺点:当图越稀疏时,会越浪费存储空间
邻接表:
边:
顶点下标
指向下一条边的指针
顶点:
数据
指向第一条边的指针
图:
由顶点组成的数组
顶点数量
优点:可以节约存储空间、计算出度简单
缺点:计算入度麻烦
十字链表:
专门存储有向图
优点:找出度、入度都很方便、也不浪费空间
邻接多重表:
专门存储无向图
优点:找某个顶点相关的边比较方便,空间也节约