小明种苹果问题

该博客主要介绍了如何解决一个程序设计问题,即根据输入数据统计苹果树在疏果操作后的剩余苹果总数、疏果最多苹果树的编号及其疏果数。通过解析输入的苹果树数量和疏果轮数,以及每轮疏果操作中每棵树的苹果变化,计算出最终结果。关键在于理解数据结构和逻辑,确保每棵树在所有疏果操作后剩余的苹果数为非负值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ccf-201909-01小明种苹果

CCF201909-1 小明种苹果
题目描述
小明在他的果园里种了一些苹果树。为了保证苹果的品质,在种植过程中要进行若干轮疏果操作,也就是提前从树上把不好的苹果去掉。第一轮疏果操作开始前,小明记录了每棵树上苹果的个数。每轮疏果操作时,小明都记录了从每棵树上去掉的苹果个数。在最后一轮疏果操作结束后,请帮助小明统计相关的信息。
输入
从标准输入读入数据。
第1行包含两个正整数N和M,分别表示苹果树的棵数和疏果操作的轮数。
第1+i行(1<= i <= N),每行包含M+1个整数ai0,ai1,…,aiM。其中ai0为正整数,表示第一轮疏果操作开始前第i棵树上苹果的个数。aij(1 <= j <= M)为零或负整数,表示第j轮疏果操作时从第i棵树上去掉的苹果个数。如果为0,表示没有去掉苹果;如果为负,其绝对值为去掉的苹果个数。
每行中相邻两个数之间用一个空格分隔。
输出
输出到标准输出。
输出只有一行,包含三个整数T、k和P。其中,
T为最后一轮疏果操作后所有苹果树上剩下的苹果总数(假设苹果不会因为其它原因减少);
k为疏果个数(也就是疏果操作去掉的苹果个数)最多的苹果树编号;
P为该苹果树的疏果个数。
相邻两个数之间用一个空格分隔。输入的数据保证是正确的,也就是说,每棵树在全部疏果操作结束后剩下的苹果个数是非负的。
样例输入
3 3
73 -8 -6 -4
76 -5 -10 -8
80 -6 -15 0
样例输出
167 2 23
提示
第1棵苹果树的疏果个数为8+6+4 = 18, 第2棵为5+10+8 = 23,第3棵为6+15+0 = 21,因此最后一轮疏果操作后全部苹果树上的苹果个数总和为(73 -18)+ (76 - 23)+ (80 - 21)= 167,疏果个数最多的是第2棵树,其疏果个数为23。

#include<stdio.h>
#include<math.h>//调用数学函数 
int main()
{

    int m,n,i,j,Total=0,k,max_num=0,apple,apple_,sum;
    scanf("%d%d",&m,&n);//输入几颗树和循环的轮数;
    
    for(i=0;i<m;i++)
	{
        scanf("%d",&apple);//输入的苹果数;       
        Total+=apple;//把苹果数都加起来;
        
        sum=0;
        for(j=0;j<n;j++)
		{
            scanf("%d",&apple_);
            sum+=abs(apple_);//计算疏果数;取正值; 
            Total+=apple_;//到目前共有的苹果数;
    	}
    	
        if(sum>max_num)
		{
            max_num=sum;
            k=i+1;
        }
		//找到最大的苹果树编号;
		
    }
    printf("%d %d %d",Total,k,max_num);
    //打印结果;
    return 0;
}

本题的关键在于 要理清思路,还要找到各个数据之间的关系!

### CCF CSP 小明种植苹果问题解析 #### 问题描述 小明需要管理一片果园中的苹果树,每树上都有一定量的苹果。为了提高果实质量,他会对部分果树进行疏果操作,即将一些不良苹果摘除。最终目标是统计整个果园中剩余的苹果 \( T \),找出疏果最多的那树的编号 \( k \) 及其剩余苹果量 \( P \)[^1]。 此外,在后续版本的问题中引入了“落果”的概念:如果某树上的当前苹果少于前一树扣除疏果后的苹果,则认为发生了落果现象[^2]。 --- #### 算法设计思路 ##### 据结构定义 程序可以采用组来存储每一苹果树的相关据,具体包括: - `count[i]` 表示第 \( i \) 树初始的苹果目; - `remove[i]` 记录第 \( i \) 树被疏掉的苹果目; - `remain[i]` 存储经过疏果处理后第 \( i \) 树剩下的苹果目; - `flag[i]` 判断是否发生过落果事件(布尔型变量),其中 `true` 或者 `false` 来表示是否有落果情况。 对于第二问涉及的落果次统计,还需要额外维护一个全局变量 `D` ,用于记录总的落果次。 --- ##### 输入与预处理逻辑 读取输入时需注意以下几点: 1. **边输入边计算**:由于题目要求实时更新统计据,因此建议在每次接收新据的同时完成相应的运算。 2. **初始化参**:设定最大疏果量初值为负无穷大或者非常低的一个值;同时将总苹果设为零以便累加求和。 3. **特殊边界条件考虑**:当只有一颗树木时如何单独处理?以及所有树均未经历任何疏果的情况该如何返回合理的结果? --- ##### 主体算法流程 以下是解决此问题的核心伪代码: ```python def process_apples(n, counts, removes): total_remaining = 0 max_removed_index = -1 max_removed_value = float('-inf') previous_count_after_removal = None drop_occurrences = 0 for i in range(n): current_remainder = counts[i] - removes[i] # 更新总体剩余苹果量 total_remaining += current_remainder # 找到最多疏果的那一树及其对应的剩余苹果 if removes[i] > max_removed_value: max_removed_value = removes[i] max_removed_index = i + 1 # 转换为基于人的索引 (从1开始) # 处理落果判定 if i != 0 and previous_count_after_removal is not None: expected_current_min = previous_count_after_removal - removes[i-1] if current_remainder < expected_current_min: drop_occurrences += 1 # 准备下一轮迭代所需的据 previous_count_after_removal = current_remainder result_k_p = (max_removed_index, counts[max_removed_index - 1] - removes[max_removed_index - 1]) return total_remaining, result_k_p, drop_occurrences ``` 上述实现涵盖了两个主要功能模块——寻找具有最高疏果率的特定树并报告相应细节,同时也完成了关于潜在落果情形的有效监控。 --- #### 关键点分析 1. **动态调整策略** 需要在遍历过程中不断刷新有关最大疏果信息的状态,并同步累积整体剩余苹果总量。这一步骤确保即使遇到异常状况也能维持正常运作。 2. **复杂度考量** 整个解决方案的时间复杂度接近线性级别 O(N),这是因为只需要一次完整的列表扫描即可获取全部必要指标[^3]。 3. **鲁棒性的增强** 特殊场景下的行为模式应当清晰界定,比如面对极端稀疏分布或完全均匀的情形时的表现应保持一致性和合理性。 --- #### 示例运行案例 假设我们有如下测试样例: - 树木量 N=4; - 各自原始苹果分别为 {8,7,6,5}; - 对应执行的疏果动作分别是{2,3,1,4}. 那么按照前述方法论得出结论应该是这样的: - 总共剩下苹果 T=11; - 发生最频繁疏果的是第四号位置 K=4 ,它保留下来的果实目 P=1 ; - 并且在整个周期里观察到了两次独立的落果迹象 D=2 . ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值