【向量化 神经网络】反向传播 吴恩达深度学习笔记

本文介绍了如何通过向量化优化单层和双层神经网络的计算过程,包括内层循环和外层循环的优化,以及如何利用numpy的矩阵运算函数加速计算,特别是通过矩阵内积实现反向传播中的求和操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、向量化单层神经网络

有疑惑可以先看基础版本的逻辑回归笔记

在这里插入图片描述

1.1如何优化

  • 对于内层循环:
    直接将dw1,dw2…优化为dW——一个(nx,1)的向量,nx例如64x64x3=12288的图片。
  • 对于外层循环:
    将m个图片循环优化为X[x1,x2,x3…]——一个(nx,m)的向量

这样就可以利用python提供的np.dot()矩阵运算函数在底层加速计算

1.2优化后的计算过程

  1. Z:原本每次循环计算一个具体数 dz(x),优化后变成一次性计算得到**(1,m)的向量**,其中每一项就是之前的dz(x)
  2. X:由(nx,1)变为(nx,m)
    [ . . . . x 1 x 2 . x m . . . . ] \begin{bmatrix} .& .& .& .\\ x1& x2 & .&xm \\ .& .& .&. \end{bmatrix} .x1..x2.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值