一、向量化单层神经网络
有疑惑可以先看基础版本的逻辑回归笔记
1.1如何优化
- 对于内层循环:
直接将dw1,dw2…优化为dW——一个(nx,1)的向量,nx例如64x64x3=12288的图片。 - 对于外层循环:
将m个图片循环优化为X[x1,x2,x3…]——一个(nx,m)的向量
这样就可以利用python提供的np.dot()矩阵运算函数在底层加速计算。
1.2优化后的计算过程
- Z:原本每次循环计算一个具体数 dz(x),优化后变成一次性计算得到**(1,m)的向量**,其中每一项就是之前的dz(x)
- X:由(nx,1)变为(nx,m)
[ . . . . x 1 x 2 . x m . . . . ] \begin{bmatrix} .& .& .& .\\ x1& x2 & .&xm \\ .& .& .&. \end{bmatrix} .x1..x2.