推理的基本概念
推理定义
推理的定义:从初始证据出发,按某种策略不断运用知识库中的已知知识,逐步推理出结论的过程称为推理。
推理的方式和分类
按照推出结论的途径来划分:演绎推理,归纳推理,默认推理
- 所谓演绎推理,就是从全称判断推导出单称判断的过程,即由一般性知识推出适合于某一具体情况的结论,这是一种从一般到个别的推理。
- 归纳推理是从足够多的事例中归纳出一般性结论的推理过程,是一种由个别到一般的推理。
- 默认推理又称缺省推理,是在知识不完全的情况下假设某些条件已经具备所进行的推理。
按照推理时所用知识的确定性来划分:确定性推理,不确定性推理
- 确定性推理所用的知识和证据都是确定的,推出的结论也是确定的
- 不确定性推理所用的知识和证据都是不确定的,推出的结论也是不确定的
按照推理过程中推出的结论是否越来越接近最终目标来划分:单调推理,非单调推理
- 单调推理是在推理工程中随着推理向前推进以及新知识的加入,推出的结论越来越接近最终目标;
- 非单调性推理是在推理过程中由于新知识的加入,不仅没有加强已推出的结论,反而要否定他,使推理退回到前面的某一步,然后重新开始。
按推理中是否运用与推理有关的启发性知识来划分:启发式推理,非启发式推理
推理的方向
推理过程是问题求解过程。问题求解的质量与效率不仅依赖于所采用的求解方法,而且还依赖于求解问题的策略,即推理的控制策略。
推理的控制策略主要包括推理方向,搜索策略,冲突消解策略,求解策略和限制策略等等。推理方向氛围正向推理,逆向推理,混合推理和双向推理四种。
- 正向推理:以已知事实作为出发点的一种推理。
- 逆向推理:以某个假设目标作为出发点的一种推理。
- 混合推理
- 双向推理
冲突消解策略
推理中有多个知识匹配成功,则发生了冲突。按一定的策略从匹配成功的多个知识中挑出一个知识用于当前的推理过程称为冲突消解。
目前的多种消解冲突的策略基本思想都是对知识进行排序。
- 按照规则的针对性进行排序:如果r2中包括了r1要求的全部条件外,还包括其他条件,说明r2比r1针对性更强。
- 按照已知事实的新鲜度进行排序
- 按匹配度进行排序:在不确定性推理中,需要计算已知事实与知识的匹配度,当匹配度达到某个预先规定的值时,就认为他们是可以匹配的。
- 按条件个数排序
自然演绎推理
概念:从一组已知为真的事实出发,运用经典逻辑的推理规则推出结论的过程。
推理规则:P规则、T规则、假言推理、拒取式推理
步骤:定义谓词、写谓词公式、运用推理规则进行推理
归结演绎推理
重要定理:
1.谓词公式化为子句集的方法
- 原子谓词公式: 一个不能再分解的命题。
- 文字:原子谓词公式及其否定。
- 子句:任何文字的析取式。任何文字本身也都是子句。
- 空子句:不包含任何文字的子句称为空子句。
步骤:
- 利用等价关系消去蕴含符“→”和双条件符 ←→
- 利用下列等价关系把否定符号移到紧靠 谓词的位置上。
- 变量标准化:重新命名单元,使每个量词采用不同的变元,从而使得不同量词的约束变元有不同的名字。
- 消去存在量词:
- 将公式化为前束形,所谓前束形是指把所有的全称量词都移到公式的前面。
- 利用下列等价关系将母式化为合取范式。合取范式就是子句的合取式。
- 略去全称量词
- 消去合取符号∧,把母式用子句集表示。
- 子句变量标准化,即重新命名变量,使每个子句中的变量符号不同。
一个重要的定理
谓词公式不可满足的充要条件是其子句集不可满足。
也就是说,要证明一个谓词公式是不可满足的,只要证明相应的子句集是不可满足的就可以了。
证明子句集是不可满足的方法:鲁滨孙归结原理
2.鲁宾逊归结原理
鲁宾逊归结原理(消解原理)的基本思想:
- 检查子句集 S 中是否包含空子句,若包含,则 S 不可满足。
- 若不包含,在 S 中选择合适的子句进行归结,一旦归结出空 子句,就说明 S 是不可满足的。
命题逻辑中的归结原理
谓词逻辑中的归结原理(含有变量的子句的归结)
- 求二元归结式时,若C1、C2有相同的变元,需要修改相同的变元,让他们变得不相同
- 求二元归结式时,如果参加归结的子句内部含有可合一的文字,则在归结前要对这些文字进行合一
3.归结反演
归结反演的步骤: