深度学习
学习推荐:
1、吴恩达的深度学习课程:https://www.deeplearning.ai
2、李宏毅的深度学习课程:直接在b站搜索李宏毅
3、《deep learning》俗称花书https://github.com/exacity/deepinglearningbook-chinese
内容丰富全面,进阶内容
4、周志华的《机器学习》俗称西瓜书。例子生动
关系梳理:
人工智能→机器学习→人工神经网络→深度学习 (层层包含的关系)
本文框架:
1、人工神经元
2、多层感知机
3、激活函数
4、反向传播算法
5、损失函数
6、权值初始化
7、正则化
一、人工神经元
如图是人体神经元与人工神经元的示意图。
人工神经网络:大量人工神经元以某种连接方式构成的机器学习模型
二、多层感知机
如图,加入若干隐藏层后,就变为了多层感知机。
三、激活函数
(1)让多层感知机成为真正的多层,否则等价于一层。
(2)引入非线性,使得网络可以逼近任意非线性函数(万能逼近定理)
激活函数需要具备的性质:
1)连续并可导,便于利用数值优化的方法来学习网络参数,
2)激活函数及其导数要尽可能简单,利于提高网络计算效率。
3)激活函数的导函数的值域要在合适区间内,否则会影像训练的效率和稳定性。
激活函数:
四、反向传播
前向传播:输入层数据开始,从前向后,数据逐步传输到输出层。
反向传播:损失函数开始,从后向前,梯度逐步传递至第一层。
反向传播作用:用于权重更新,使网络输出更接近标签
损失函数:衡量模型输出与真实标签的差异。
反向传播原理:微积分中的链式求导法则。
梯度下降法:权值沿梯度负方向更新,使函数数值减小
梯度:一个向量,方向为方向导数取得最大值的方向
学习率:控制更新步长
五、损失函数
损失函数:衡量模型输出与真实的标签之间的差距。
两种常见损失函数:1、MSE(均方误差)2、CE(交叉熵)
信息熵:描述信息的不确定度。
六、权值初始化
权值初始化:训练前对权值参数赋值,良好的权值初始化有利于模型训练。
1、Xavier初始化
2、Kaiming初始化
七、正则化
正则化:减少方差的策略,通俗理解为减轻过拟合的策略。
损失函数:Loss
代价函数:Cost
目标函数:Objective
Obj=Cost+Regularization
Regularization便是正则项,是一种约束。