- 博客(7)
- 资源 (2)
- 收藏
- 关注
原创 Python小小白在学习过程中get到的编写小技巧
前言身为一名正在学习Python的小小白,本人在阅读和吸收前人经验的同时,整理和总结了一些编写过程中实用的技巧与方法,在此与大家共同分享。所以是一篇会不定时更新的博文,大家可以收藏时不时拿出来看一看嗷。目录前言正文正文当所写的语句需要分行时,可以使用小括号()进行连接,而不止使用反斜杠\一种方法。 特殊的,对于字符串类型,使用''' '''三引号作为定界符,便可以让字符串分布在多行。 在字符串定界符前加上字母r或R,那么就会原样输出该字符串。type()函数可以返回变量类
2022-05-03 22:23:11 837
原创 数据科学学习之回归
本文为《数据分析与数据科学》专栏中的第四篇,专栏的链接在这里.第一篇博文的链接在这里.第二篇博文的链接在这里.第三篇博文的链接在这里.希望本文与此专栏能够对接触,学习和研究数据科学的各位有所帮助。本篇博文将介绍回归预测与分析的相关内容。目录前言前言...
2022-01-05 06:27:02 927 1
原创 数据科学学习之统计实验的设计、检验与分析
专栏/前文链接本文为《数据分析与数据科学》专栏中的第三篇,专栏的链接在这里.第一篇博文的链接在这里.第二篇博文的链接在这里.希望本文与此专栏能够对接触,学习和研究数据科学的各位有所帮助。本文将介绍如何设计统计实验并对其进行相关的检验和分析。目录专栏/前文链接前言1.A/B测试3.1 对照组前言统计实验设计的目标是能够设计出确认或推翻某个假设的实验。一次统计实验包括提出假设,设计统计实验,收集实验中的数据并进行分析得出结论,再根据我们从有限数据集中得到的实验结果和结论的基础上作出推断,意在
2021-12-26 21:08:52 3017
原创 使用Matplotlib进行数据可视化(二)
前言本篇为《使用Python进行数据分析》中介绍如何使用Matplotlib库进行数据可视化的第二篇,主要内容为如何绘制多子图,在图上添加文字和注释,如何自定义坐标轴刻度,设置自己的绘图风格,画三维图以及介绍Seaborn库的部分内容。目录前言1.绘制多子图1.1 plt.axes1.2 plt.subplot,plt.subplots1.3 plt.GridSpec1.绘制多子图1.1 plt.axes首先介绍基本的方法plt.axes,这是一种手动创建子图的方法,默认配置创建一个标准的坐标轴,
2021-07-27 18:38:27 946
原创 使用Matplotlib进行数据可视化(一)
前言本篇为《使用Python进行数据分析》中介绍Matplotlib库的基础使用方法的第一篇,主要内容为使用Matplotlib库的一些常用技巧,绘画简易的线形图、散点图、密度图和等高线图等用图,以及进行可视化异常处理等。Matplotlib是使用Python进行数据可视化的基本方法之一,操作简便快捷并且具有良好的操作系统兼容性和图形显示底层接口兼容性,对于数据分析新手来说,是非常好用的可视化工具。尽管近几年新的可视化工具在源源不断地进入大家的视野中,例如Seaborn、ggplot、HoloViews
2021-06-05 15:17:56 4952 4
原创 数据科学学习之数据和抽样分布
专栏/前文链接本文为笔者《数据分析与数据科学》专栏中的第二篇,专栏的链接在这里.第一篇博文的链接在这里.希望本文与此专栏能够对接触,学习和研究数据科学的各位能有所帮助。本文介绍的是数据与抽样分布的相关内容。目录专栏/前文链接前言前言大数据时代是否意味着抽样时代的终结?答案是否定的。事实上,正是因为这个大数据时代无时无刻不在涌现着大量质量不一,相关性各异的数据,才更加增强了人们对于抽样的需求。抽样能够有效地操作一组数据,并且可以最小化偏差。传统统计学总是假想一个总体遵循一个潜在的未知分布,并
2021-05-12 17:04:28 2420 5
原创 数据科学学习之探索性数据分析(EDA)
前言本文为笔者学习图灵系列程序设计丛书的《面向数据科学家的使用统计学》的一些感悟和总结,本文撰写主要参考了该书目,希望本文对接触,学习和研究数据科学的各位能有所帮助。首先,第一篇介绍探索性数据分析(EDA)的相关内容。目录前言1.什么是结构化数据2.矩形数据3.位置估计1.什么是结构化数据在现代,尤其是这个大数据时代,我们获取数据的途径非常丰富,各种仪器(例如各种传感器)的测量值、事件、文本、图像和视频等都属于可获取的数据来源,整个物联网无时无刻不在涌出大量的信息流。如何将这些大量的原始数据转化为
2021-05-03 11:20:18 5163 13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人