平分正方形

题目链接

平分正方形

题目描述

注意点

  • square.length == 3
  • square[2] > 0
  • 若同时有多条直线满足要求,则选择斜率最大的一条计算并返回(与Y轴平行的直线视为斜率无穷大)

解答思路

  • 平分正方形的直线是两个正方形中间点相连的直线,需要特殊考虑的是:中间点相连与y轴平行(中间点的x相同),此时x1, x2就是x,y1, y2就是中心线与两个正方形最上方、最下方的边的交点;中间点相连与x轴平行(中间点的y相同),此时y1, y2就是y,x1, x2就是中心线与两个正方形最左方、最右方的边的交点
  • 对于一般情况,中心线的方程是y = kx + b,其可能与两个正方形的最上方、最下方、最左方、最右方相交,规律是:如果Math.abs(k)大于1,中心线会偏向于y轴,其会与最上方、最下方的边相交;如果如果Math.abs(k)小于1,中心线会偏向x轴,其会与最左方、最右方的边相交
  • 对于k大于0和小于0的情况会导致中心线与正方向相应边相交的点的x1、x2、y1、y2的大小关系不同,所以最终如果x1 > x2,还需要将x1与x2进行交换,y1与y2进行交换

代码

class Solution {
    public double[] cutSquares(int[] square1, int[] square2) {
        int edge1 = square1[2];
        int edge2 = square2[2];
        // 两个正方形的中心点
        double midX1 = square1[0] + edge1 / 2.0;
        double midY1 = square1[1] + edge1 / 2.0;
        double midX2 = square2[0] + edge2 / 2.0;
        double midY2 = square2[1] + edge2 / 2.0;
        double left = Math.min(square1[0], square2[0]);
        double right = Math.max(square1[0] + edge1, square2[0] + edge2);
        double bottom = Math.min(square1[1], square2[1]);
        double top = Math.max(square1[1] + edge1, square2[1] + edge2);;
        double[] res = new double[4];
        if (midX1 == midX2) {
            // 中点相连与y轴平行
            res[0] = midX1;
            res[2] = midX1;
            res[1] = bottom;
            res[3] = top;
        } else if (midY1 == midY2) {
            // 中点相连与x轴平行
            res[0] = left;
            res[2] = right;
            res[1] = midY1;
            res[3] = midY1;
        } else {
            // y = kx + b;
            double k = (midY2 - midY1) / (midX2 - midX1);
            double b = midY1 - k * midX1;
            if (Math.abs(k) > 1) {
                // 斜率大于1与上下相交
                res[0] = (bottom - b) / k;
                res[2] = (top - b) / k;
                res[1] = bottom;
                res[3] = top;
            } else {
                // 斜率小于1与左右相交
                res[0] = left;
                res[2] = right;
                res[1] = k * left + b;
                res[3] = k * right + b;
            }
        }
        // 保证x1 < x2
        if (res[0] > res[2]) {
            swap(res, 0, 2);
            swap(res, 1, 3);
        }
        return res;
    }

    public void swap(double[] res, int i, int j) {
        double tmp = res[i];
        res[i] = res[j];
        res[j] = tmp;
    }
}

关键点

  • 怎么找到平分正方形的中间线
  • 注意考虑中心线与x轴平行、与y轴平行的特殊情况
  • 最终结果需要保证x1 < x2,如果x1 = x2,需要保证y1 < y2
### 将Python数组平均分割 为了将Python中的数组平均分割,可以采用多种方法来处理不同情况下的需求。对于一维数组而言,可以通过简单的切片操作完成;而对于多维数组特别是二维NumPy数组,则可能涉及到更复杂的逻辑。 #### 方法1:使用基本列表切片 当目标是将一个一维列表按照指定数量的部分进行均等划分时,可以直接利用Python内置的功能: ```python def split_list(lst, n_parts): avg = len(lst) / float(n_parts) out = [] last = 0.0 while last < len(lst): out.append(lst[int(last):int(last + avg)]) last += avg return out ``` 此函数接受两个参数:`lst`是要被切割的一维列表,而`n_parts`表示希望得到多少份子集[^2]。 #### 方法2:针对特定尺寸的二维NumPy数组 考虑到提供的背景信息提到的是关于二维NumPy数组的情况,在这种情况下,可以创建自定义函数来进行近似正方形区域内的数据提取。下面是一个例子说明如何实现这一点: ```python import numpy as np def chunkify(img_array, height=40, width=40): rows, cols = img_array.shape[:2] row_chunks = int(np.ceil(rows/height)) col_chunks = int(np.ceil(cols/width)) chunks = [] for i in range(row_chunks): start_row = i * height end_row = min((i+1)*height, rows) for j in range(col_chunks): start_col = j * width end_col = min((j+1)*width, cols) subarray = img_array[start_row:end_row, start_col:end_col] chunks.append(subarray) return chunks ``` 上述代码片段展示了如何基于给定的高度和宽度参数对输入图像(即二维数组)执行不规则但尽可能接近矩形形状的分区工作[^1]。 通过这种方式,即使原始矩阵维度不是完全可整除的目标大小,也能合理分配剩余部分至最后一块中去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值