关于单目标约束优化问题的讲解及实现过程

本文介绍了单目标约束优化问题的挑战,并重点讲解了差分进化算法的原理及其在解决这类问题中的应用。通过约束处理技术和可行性法则,将约束优化问题转化为可行解的选择。最后,提供了在Matlab环境下实现约束优化问题的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前沿

优化问题一直是工程领域、路径规划领域等绕不开的话题,而真正的实际问题不是只是单目标优化问题,而是涉及到高维度且带多约束的问题,其中约束包含等式约束、不等式约束或者二者都有,这给优化研究提高了难度。

在中学的时候,应该都遇到过线性规划问题,类似于如下的情形:

min z=2x_{1}+3x_{2}

s.t.\left\{\begin{matrix} x_{1}+x_{2}<1\\ 3x_{1}+x_{2}<=1\\ x_{1},x_{2}>=0 \end{matrix}\right.

如上的案例,想必大家都能够轻松的解决,使用线性规划作图,找到顶点,确定最小值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋刀鱼程序编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值