Libreoj 10050 The XOR Largest Pair (字典树)小白写法

题目描述

	在给定的 N 个整数 A1,A2,…,AN 中选出两个进行异或运算,得到的结果最大是多少。
	对于 100% 的数据,1≤N≤10^5 ,0≤Ai<2^31。

思路

暴力的时间复杂度为O(n^2),会超时。
标准做法是用字典树(前缀树,这名字更好理解),时间复杂度为O(31*n)。

代码实现

#include <iostream>
#include <cstdlib>
using namespace std;
typedef struct tree
{
    struct tree*l,*r;//0向左,1向右
}tree;
char s[100000][32]={0}; //存放二进制字符串
void change(int a,int sub)
{
    for(int i=30;i>=0;i--)
    {
        s[sub][i]=a%2+'0';
        a/=2;
    }
}
tree* build(tree* T) //新建节点
{
    T=(tree*)malloc(sizeof(tree));
    T->l=T->r=NULL;
    return T;
}
void _insert(int sub,tree* T)//构建字典树
{
    for(int i=0;i<=30;i++)
    {
        if(s[sub][i]-'0')
        {
            if(!(T->r))
            {
                T->r=build(T->r);
            }
            T=T->r;
        }
        else
        {
            if(!(T->l))
            {
                T->l=build(T->l);
            }
            T=T->l;
        }
    }
}
int solve(int sub,tree* T)//对s[sub]求最大异或值
{
    int ret=0;
    for(int i=0;i<=30;i++)
    {
        if(s[sub][i]-'0')
        {
            if(T->l)    //走相反的路,得最大异或值
            {
                T=T->l;
                ret+=(1<<(30-i));
            }
            else    //没相反的路就就走原路
                T=T->r;
        }
        else
        {
            if(T->r)
            {
                T=T->r;
                ret+=(1<<(30-i));
            }
            else
                T=T->l;
        }
    }
    return ret;
}
int main()
{
    int n,a;
    
    tree *T=(tree*)malloc(sizeof(tree));
    T->l=T->r=NULL;
    cin>>n;
    for(int i=0;i<n;i++)
    {
        cin>>a;
        change(a,i);//将a转为二进制字符串
        _insert(i,T);//在字典树T中“插入”字符串s[i],实际是在构建字典树
    }

    int ans=0; //时间复杂度O(31*n)
    for(int i=0;i<n;i++)
    {
        ans=max(ans,solve(i,T));
    }
    cout<<ans<<endl;
    return 0;
}


实际上我是第一次接触字典树,学习的时候找了好久的blog,都不是很懂,但总算知道怎么写,所以最后的代码就显得繁琐而基础了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值