题目描述
在给定的 N 个整数 A1,A2,…,AN 中选出两个进行异或运算,得到的结果最大是多少。
对于 100% 的数据,1≤N≤10^5 ,0≤Ai<2^31。
思路
暴力的时间复杂度为O(n^2),会超时。
标准做法是用字典树(前缀树,这名字更好理解),时间复杂度为O(31*n)。
代码实现
#include <iostream>
#include <cstdlib>
using namespace std;
typedef struct tree
{
struct tree*l,*r;//0向左,1向右
}tree;
char s[100000][32]={0}; //存放二进制字符串
void change(int a,int sub)
{
for(int i=30;i>=0;i--)
{
s[sub][i]=a%2+'0';
a/=2;
}
}
tree* build(tree* T) //新建节点
{
T=(tree*)malloc(sizeof(tree));
T->l=T->r=NULL;
return T;
}
void _insert(int sub,tree* T)//构建字典树
{
for(int i=0;i<=30;i++)
{
if(s[sub][i]-'0')
{
if(!(T->r))
{
T->r=build(T->r);
}
T=T->r;
}
else
{
if(!(T->l))
{
T->l=build(T->l);
}
T=T->l;
}
}
}
int solve(int sub,tree* T)//对s[sub]求最大异或值
{
int ret=0;
for(int i=0;i<=30;i++)
{
if(s[sub][i]-'0')
{
if(T->l) //走相反的路,得最大异或值
{
T=T->l;
ret+=(1<<(30-i));
}
else //没相反的路就就走原路
T=T->r;
}
else
{
if(T->r)
{
T=T->r;
ret+=(1<<(30-i));
}
else
T=T->l;
}
}
return ret;
}
int main()
{
int n,a;
tree *T=(tree*)malloc(sizeof(tree));
T->l=T->r=NULL;
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a;
change(a,i);//将a转为二进制字符串
_insert(i,T);//在字典树T中“插入”字符串s[i],实际是在构建字典树
}
int ans=0; //时间复杂度O(31*n)
for(int i=0;i<n;i++)
{
ans=max(ans,solve(i,T));
}
cout<<ans<<endl;
return 0;
}
实际上我是第一次接触字典树,学习的时候找了好久的blog,都不是很懂,但总算知道怎么写,所以最后的代码就显得繁琐而基础了。