控制论仿真实验报告

控制论仿真实验报告

本人这学期深受控制论折磨,脱离苦海后为了造福大家,决定分享一下自己的实验报告,图片太多所以决定不加了,各位有需求的话可以在本人的发稿里自取。
当然报告还是自己写比较好,这份只能当作参考

仿真环境:MATLAB

说明:阻尼比符号 ξ \xi ξ在程序及所得出结果图中用“ss”代替

实验一 控制系统时域响应的仿真研究

(1)

主要仿真程序段
clc,clear all
wn=10
num=wn^2
ss=-1
M=2*ss*wn
den=[1 M num]
G=tf(num,den)
t=0:0.01:6
subplot(1,2,1)
step(G,t)
grid on
xlabel('t/s'),ylabel('c(t)'),title('单位阶跃响应曲线ss=-1')
subplot(1,2,2)
impulse(G,t)
grid on
xlabel('t/s'),ylabel('c(t)'),title('单位脉冲响应曲线ss=-1')

####仿真分析及结果

初步分析:根据所给出的单位负反馈系统开环传递函数可求出,系统的闭环传递函数为:
G ( s ) = ω n 2 s 2 + 2 ξ ω n + ω n 2 G(s)=\frac{\omega_n^2}{s^2+2\xi\omega_n+\omega_n^2} G(s)=s2+2ξωn+ωn2ωn2
是典型的二阶系统,且闭环特征多项式为:
D ( s ) = s 2 + 2 ξ ω n s + ω n 2 D(s)=s^2+2\xi\omega_ns+\omega_n^2 D(s)=s2+2ξωns+ωn2
1.阻尼比 ξ \xi ξ =-1

当阻尼比ζ<0时,特征根位于右半s平面,使得系统的响应表现为幅值随时间增加而发散。

2.阻尼比 ξ \xi ξ =0

当阻尼比ζ=0时,特征根为一对幅值相等的虚根,位于s平面虚轴上,使得系统的相应表现为无阻尼的等幅振荡过程

3.阻尼比 ξ \xi ξ =0.5

1>ζ>0时,特征根为一对具有负实部的共轭负根,位于左半s平面上,使得系统的响应表现为欠阻尼的

4.阻尼比 ξ \xi ξ =1

ζ=1时,特征根为一对等值的负实根,位于s平面的负实轴上,使得系统的响应表现为临界阻尼

5.阻尼比 ξ \xi ξ =1.5

ζ>1时,特征根为一对不等值的负实根,位于s平面的负实轴上,使得系统的响应表现为过阻尼的

以上结果分析主要针对系统的单位阶跃响应,根据学习知识总结,可知系统的单位脉冲响应是对单位阶跃响应的一阶微分,通过对比不同阻尼比下单位脉冲响应与阶跃响应也可证明此观点。

(2)

主要仿真程序段
clc,clear all
wn=10
num=wn^2
ss=0.5
M=2*ss*wn
den=[1 M num]
G=tf(num,den)
t=0:0.01:2

step(G,t)
grid on
xlabel('t/s'),ylabel('c(t)'),title('单位阶跃响应曲线ss=0.5')
wd=wn*((1-(ss^2)^(1/2))
tr=(pi-acos(ss))/wd
tp=pi/wd
ap=exp(-ss*pi/((1-(ss^2)^(1/2)))
ts2=4/(wn*ss)
ts4=3/(wn*ss)
仿真分析及结果

初步分析:

上升时间 t r t_r tr:指响应曲线从其稳态值的10%上升到90%所需的时间;对于有震荡的系统,则取响应从零到第一次上升到稳态值所需的时间。

峰值时间 t p t_p tp:指输出响应超过稳态值而达到第一个峰值所需要的时间。

超调量 σ p \sigma_p σp%:指输出响应的最大值超过稳态值的最大偏离量与稳态值之比的百分数

调节时间 t s t_s ts:响应曲线的进入允许的误差带,并不在超出该误差带所需的最小时间,成为调节时间,或过渡过程时间。

仿真结果:

由图可知, ξ \xi ξ=0.5时,系统的上升时间 t r t_r tr=0.242s,峰值时间 t p t_p tp=0.363s,过渡过程时间 t s t_s ts=0.602s,超调量 σ p \sigma_p σp%=16%

由仿真程序段可知理论计算结果:
t r = π − a r c s i n ξ ω n 1 − ξ 2 = 0.2418 t_r=\frac{\pi-arcsin\xi}{\omega_n\sqrt[]{1-\xi^2}}=0.2418 tr=ωn1ξ2 πarcsinξ=0.2418

t p = π ω d = 0.3628 t_p=\frac{\pi}{\omega_d}=0.3628 tp=ωdπ=0.3628

σ p % = e − ξ π 1 − ξ 2 × 100 % = 16.3 \sigma_p\%=e^{-\frac{\xi\pi}{\sqrt[]{1-\xi^2}}}\times100\%=16.3% σp%=e1ξ2 ξπ×100%=16.3

t s = 3 ξ ω n = 0.6 t_s=\frac{3}{\xi\omega_n}=0.6 ts=ξωn3=0.6

通过图解结果与理论计算结果对比可知,二者之间虽有误差,但几乎可以省略,误差基本来自图解时的方法不够精确。

实验二 控制系统频率响应的仿真研究

主要仿真程序段

clc,clear all
wn=10
num=wn^2
ss1=0.5
ss2=0.707
ss3=0.9
M1=2*ss1*wn
M2=2*ss2*wn
M3=2*ss3*wn
den1=[1 M1 num]
den2=[1 M2 num]
den3=[1 M3 num]
G1=tf(num,den1)
G2=tf(num,den2)
G3=tf(num,den3)
subplot(1,2,1)
bode(G1)
hold on
bode(G2)
hold on
bode(G3)
hold on
grid on
subplot(1,2,2)
nyquist(G1)
hold on
nyquist(G2)
hold on
nyquist(G3)

仿真分析及结果

根据所给出的单位负反馈系统开环传递函数可求出,系统的闭环传递函数为:
G ( s ) = ω n 2 s 2 + 2 ξ ω n + ω n 2 G(s)=\frac{\omega_n^2}{s^2+2\xi\omega_n+\omega_n^2} G(s)=s2+2ξωn+ωn2ωn2
令s=j ω \omega ω代入上式即可写出其频率特性表达式:
G ( j ω ) = ω n 2 ω n 2 − ω 2 + j 2 ξ ω n ω G(j\omega)=\frac{\omega_n^2}{\omega^2_n-\omega^2+j2\xi\omega_n\omega} G(jω)=ωn2ω2+j2ξωnωωn2

D ( s ) = s 2 + 2 ξ ω n s + ω 2 D(s)=s^2+2\xi\omega_ns+\omega^2 D(s)=s2+2ξωns+ω2
由此可分别画出 ξ \xi ξ等于0.5、0.707、0.9时的伯德图及极坐标图:

由此可见,幅频特性的最大值随 ξ \xi ξ减小二增大,其值可能大于1.

振荡环节产生谐振峰值的条件为 ξ \xi ξ<0.707,即此时谐振峰值大于1,当 ξ \xi ξ >=0.707时,没有谐振峰值。

阻尼比取值不同时, ϕ ( ω ) \phi(\omega) ϕ(ω) ω = ω n \omega=\omega_n ω=ωn领域的角度变化率也不同,且阻尼比越小,变化率越大,极坐标图的包围范围也越大。

实验三 控制系统稳定性的仿真研究

###(1)

主要仿真程序段
clc,clear all
num=50
den=[1 3 -10]
G=tf(num,den)
nyquist(G)
仿真分析及结果

已知单位负反馈系统的开环传递函数为:
G ( s ) = 50 s 2 + 3 s − 10 = 50 ( s − 2 ) ( s + 5 ) G(s)=\frac{50}{s^2+3s-10}=\frac{50}{(s-2)(s+5)} G(s)=s2+3s1050=(s2)(s+5)50
由此可画出此系统的奈奎斯特图,从而判断系统的稳定性:

由上图可知,曲线逆时针包围一次 ( − 1 , j 0 ) (-1,j0) (1,j0)点, N N N=1.

由系统的开环传递函数可知, P P P=1.

因此, Z = P − N = 0 Z=P-N=0 Z=PN=0,系统稳定.

(2)

主要仿真程序段
clc,clear all
num=50
den=[1 3 -10]
G=tf(num,den)
G1=feedback(G,1,-1)
impulse(G1)


仿真分析及结果

由于系统为单位负反馈系统,因此可求出系统的闭环传递函数为:
ϕ ( s ) = 50 s 2 + 3 s + 40 \phi(s)=\frac{50}{s^2+3s+40} ϕ(s)=s2+3s+4050
由此,可画出系统的单位脉冲响应曲线:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pZy78pb7-1642147612794)(C:\Users\h\Desktop\MATLAB\控制论\实验三 2.jpg)]

由已学知识可知,在零初始条件下,当且仅当闭环系统的单位冲激响应为零时,系统是稳定的。通过对所画曲线分析可知,该闭环传递函数单位脉冲响应曲线最终收敛于0,因此该系统稳定。

同时,由该系统闭环传递函数可知,系统的全部闭环特征根都具有负的实部,即所有闭环极点均严格位于左半 s s s平面内。

综上,奈奎斯特判据所得出结果是正确的。

实验四 控制系统的频域法校正及PID控制研究

###(1)

####主要仿真程序段

clc,clear all
K=1000
den=[0.04 1 0]
G=tf(K,den)
[gm,pm,wcg,wcp]=margin(G)
pm_1=45
deta=5
phi=pm_1-pm+deta
a=(1+sind(phi))/(1-sind(phi))
lc=10*log10(a)
mag=10^((lc/40)+log10(wcp))

T=1/(mag*(a^(1/2)))
K1=[1000*a*T,1000]
T1=0.04+T
den1=[0.04*T,T1,1,0]
G1=tf(K1,den1)
[gm1,pm1,wcg1,wcp1]=margin(G1)

仿真分析及结果

系统的开环传递函数为:
G ( s ) = K 0.04 s + 1 G(s)=\frac{K}{0.04s+1} G(s)=0.04s+1K
为满足稳态误差要求,系统需要串联一个积分环节,同时因为要求系统响应单位谐波输入的稳态误差不大于0.001,可求出 K K K=1000,由此,系统的开环传递函数为:
G ( s ) = 1000 0.04 s 2 + s G(s)=\frac{1000}{0.04s^2+s} G(s)=0.04s2+s1000
由此可求出校正前系统的相角裕度、幅值裕度、穿越频率:

相角裕度 γ = 9.0 4 ∘ \gamma=9.04^\circ γ=9.04

穿越频率 ω c = 157.1 r a d / s \omega_c=157.1rad/s ωc=157.1rad/s

根据要求,相角裕度 γ ∗ > = 4 5 ∘ \gamma^*>=45^\circ γ>=45,设置 Δ = 5 ∘ \Delta=5^\circ Δ=5.因此,根据 ϕ m = γ ∗ − γ + Δ \phi_m=\gamma^*-\gamma+\Delta ϕm=γγ+Δ可算出:
ϕ m = 40.9594 \phi_m=40.9594 ϕm=40.9594
由此,可计算出:
α = 1 + s i n ϕ m 1 − s i n ϕ m = 4.8509 \alpha=\frac{1+sin\phi_m}{1-sin\phi_m}=4.8509 α=1sinϕm1+sinϕm=4.8509

L c ( ω ) = 10 l g α = 6.8178 d B L_c(\omega)=10lg\alpha=6.8178dB Lc(ω)=10lgα=6.8178dB

通过伯德图可知, L ( ω ) = − 6.8178 d B L(\omega)=-6.8178dB L(ω)=6.8178dB − 40 d B / d e c -40dB/dec 40dB/dec线段上,因此:
− 40 ( l g ω c , − l g ω c ) = − 6.8178 -40(lg\omega_c^,-lg\omega_c)=-6.8178 40(lgωc,lgωc)=6.8178
计算出 ω c , = 232.6409 \omega_c^,=232.6409 ωc,=232.6409.

因此
T = 1 ω c , α = 0.002 T=\frac{1}{\omega_c^,\sqrt{\alpha}}=0.002 T=ωc,α 1=0.002
于是可写出
G c ( s ) = 1 + α T s 1 + T s = 1 + 0.0097 s 1 + 0.002 s G_c(s)=\frac{1+\alpha Ts}{1+Ts}=\frac{1+0.0097s}{1+0.002s} Gc(s)=1+Ts1+αTs=1+0.002s1+0.0097s
矫正后开环传递函数为
G , ( s ) = G ( s ) G c ( s ) = 1000 ( 1 + 0.0097 s ) s ( 1 + 0.002 s ) ( 0.04 s + 1 ) G^,(s)=G(s)G_c(s)=\frac{1000(1+0.0097s)}{s(1+0.002s)(0.04s+1)} G,(s)=G(s)Gc(s)=s(1+0.002s)(0.04s+1)1000(1+0.0097s)
验证: ξ , = 47.061 6 ∘ > = 4 5 ∘ \xi^,=47.0616^\circ>=45^\circ ξ,=47.0616>=45,满足性能指标要求.

(2)

主要仿真程序段
K1=[9.4233,1000]
den1=[7.843e-05 0.04196 1 0]
G1=tf(K1,den1)
G2=tf(10*K1,den1)
G3=tf(K1/10,den1)
K4=[94.233 1000]
K5=[0.94233 1000]
G4=tf(K4,den1)
G5=tf(K5,den1)
bode(G1,G2,G3,G4,G5)

G1_c=feedback(G1,1,-1)
G2_c=feedback(G2,1,-1)
G3_c=feedback(G3,1,-1)
G4_c=feedback(G4,1,-1)
G5_c=feedback(G5,1,-1)
subplot(2,3,1)
step(G1_c)
title('矫正后系统阶跃响应')
subplot(2,3,2)
step(G2_c)
title('开环比例系数放大10倍')
subplot(2,3,3)
step(G3_c)
title('开环比例系数放大10倍')
subplot(2,3,4)
step(G4_c)
title('微分时间常数增大10倍')
subplot(2,3,5)
step(G5_c)
title('微分时间常数减小10倍')

仿真分析及结果

首先根据题目所给要求,计算出各个系统的开环传递函数,绘制开环伯德图

由于系统是单位负反馈系统,因此可以算出各个系统的闭环传递函数,从而绘制出不同条件下系统的阶跃响应曲线

P I D PID PID P P P——比例度、 I I I——积分时间, D D D——微分时间,三者系数分别为 K P K_P KP K I K_I KI K D K_D KD.研究PID控制对系统性能的影响即探究三个参数对系统性能的影响。

通过对比各系统开环伯德图与阶跃响应曲线可以发现:

当其他参数不变, K P K_P KP增大时,可以减小系统的稳态误差,提高系统的反应速度,但同时系统达到稳态的时间将会延长,且当 K P K_P KP过大时,系统将不稳定; K P K_P KP减小时,与之相反,同时系统响应速度变慢。

当其他参数不变, K D ​ K_D​ KD的变化将改变系统的超调量,过大或过小都会造成系统超调量变大,且当微分环节作用过于明显是,系统将会引入高频干扰。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

23.19

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值