Davies-Bouldin聚类评价指标

该博客探讨了DBI(Davies-Bouldin Index)在聚类算法中的作用,用于评估簇的划分质量并选择合适的簇数k。DBI通过计算类内距离和类间距离的比值来量化类的分散度和类间的分离度,比值越小表明簇划分越好。内容详细介绍了DBI的计算原理、公式以及如何利用它来避免K-means的局部最优问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用途:聚类算法中评估判断簇的个数是否合适(用来选择k)
原理:计算所有簇的类内距离和类间距离的比值(类内/类间),比值越小越好。即类间距离越大,类内距离越小(数据越集中)越好
公式:
(1)分散度(类内距离)S_i:表示第i个类中,度量数据点的分散程度
在这里插入图片描述
(2)类间距离M_ij:表示第i类中心与第j类中心的距离
在这里插入图片描述
(3)两类的相似度:其实就是分散度/类间距离
在这里插入图片描述
越分散,类间距离越小,相似度越大
(4)每个类找与它最相似的类的相似度作为其权重,所有相似度加和求平均
在这里插入图片描述

总的来说,这个DBI就是计算类内距离之和与类外距离之比,来优化k值的选择,避免K-means算法中由于只计算目标函数Wn而导致局部最优的情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值