堆排序

堆排序:

       ①堆的逻辑是一颗完全二叉树;
  ②它使用的是顺序存储(也就是数组);
  ③它的作用:一般都是用于找最值。

堆排序的过程:

1、建堆
2、对建好的堆进行向下调整。
(因为建堆是自底向上的且序列位于无序状态,所以建好堆以后要进行向下调整)

但是为什么排升序要建大堆呢?
       排升序的话,使用大堆是非常方便的,我们每次向下调整都可以得到剩余数据的最大值,即堆顶元素。然后放到最后,使用分治的思想,每调整一次,要排序的数据就少一个。当交换到最后一个结点时,数组已经排好序了。
       而如果用最小堆的话,此时堆顶的元素是最小的,当我们取出堆顶元素时,此时小根堆的性质就变了,那么下次就找不到第二小的元素了,还要重新建堆。所以不能使用小堆排升序

排升序代码如下:


#include<stdio.h>

int h[100];//用来存堆
int n;//用来表示堆的大小
void swap(int x, int y) {//后面的调整函数要用到交换
	int t = h[x];
	h[x] = h[y];
	h[y] = t;
	return;
}

void siftdown(int i) {//向下调整函数,创建最大堆
	int flag = 0;//用来判断需不需要调整
	int t;//用来记录最大的值的下标
	while (i*2 <= n && flag==0) {//如果存在左孩子,并且需要调整
		//先与左孩子比较
		if (h[i] <= h[2 * i])
			t = 2 * i;
		else t = i;
		//如果右孩子存在,再与右孩子比较
		if (i * 2 + 1 <= n) {
			if (h[t] < h[2 * i + 1])
				t = 2 * i + 1;
		}
	if (t != i) {//说明自己不是最大的,就要交换
			swap(i, t);
			i = t;//更新i为刚才与它交换的儿子的结点编号,,便于接下来继续向下调整
		}
	else flag = 1;//说明这个结点比它的两个孩子都大,就不用再交换了
	}
}

void creat() {//创建堆,从最后一个非叶结点到第一个结点依次进行向下调整
	int i;
	for (i = n / 2; i >= 1; i--) {
		siftdown(i);
	}
	return;
}
//排序函数
void heapsort() {
	while (n > 1) {
		swap(1, n);//最大元素与最后一个元素,这样就保证了最大的元素一直在后边
		n--;//已经排好了最大的元素,就不用再调整它了,所以直接将堆的元素个数减少1
		siftdown(1);//再让第一个元素向下调整以保持最大堆的特性
	}
	return;
}
int main(void) {
	scanf_s("%d", &n);
	int i,num;
	num = n;
	for (i = 1; i <= n; i++)
		scanf_s("%d", &h[i]);
	creat();
	heapsort();
	for (i = 1; i <= num; i++)
		printf("%d ", h[i]);
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值