给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n)) 。
给了两种思路,一种合成一个list,排序,然后选出中位数就行;
还有一中,不创造新list,存于两个变量中,不断比较,比较(nums1Size+nums2Size)/2次.
int compare_int(const void* a, const void* b)
{
return (*(int*)a - *(int*)b);
}
double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
assert(nums1 && nums2);
int nums = nums1Size + nums2Size;
int* nums0 = (int*)malloc(sizeof(int) * (nums));
assert(nums0);
for (int i = 0; i < nums1Size; i++)
{
nums0[i] = nums1[i];
}
for (int i = 0; i < nums2Size; i++)
{
nums0[i+ nums1Size] = nums2[i];
}
qsort(nums0, nums1Size + nums1Size,sizeof(nums0[0]), compare_int);
if ((nums1Size + nums2Size) % 2 == 0)
{
return (nums0[nums1Size - 1] + nums0[nums1Size]) / 2.0;
}
int n = (nums1Size + nums2Size) / 2 +1;
return nums0[n]/1.0;
}
double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
int length = nums1Size + nums2Size;
int p = 0, q = 0, pre = -1, next = -1;
for (int i = 0; i <= length / 2; i++) {
pre = next;
if (p < nums1Size && (q >= nums2Size || nums1[p] < nums2[q])) {
next = nums1[p];
p++;
}
else {
next = nums2[q];
q++;
}
}
if (length % 2 == 0)
return (pre + next) / 2.0;
return next;
}