动态规划系列(10) leetcode Java篇

第一题:

等差数列划分

如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。

例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。
给你一个整数数组 nums ,返回数组 nums 中所有为等差数组的 子数组 个数。

子数组 是数组中的一个连续序列。

class Solution {
    public int numberOfArithmeticSlices(int[] nums) {
        int len = nums.length;
        if (len < 3) {
            return 0;
        }
        int d = nums[1] - nums[0];
        int t = 0;
        int ret = 0;
        for (int i = 2; i < len; i++) {
            if (nums[i] - nums[i - 1] == d) {
                t++;
            } else {
                d = nums[i] - nums[i - 1];
                t = 0;
            }
            ret += t;
        }
        return ret;
    }
}

 

 

 

第二题:

解码方法

一条包含字母 A-Z 的消息通过以下映射进行了 编码 :

'A' -> "1"
'B' -> "2"
...
'Z' -> "26"
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,"11106" 可以映射为:

"AAJF" ,将消息分组为 (1 1 10 6)
"KJF" ,将消息分组为 (11 10 6)
注意,消息不能分组为  (1 11 06) ,因为 "06" 不能映射为 "F" ,这是由于 "6" 和 "06" 在映射中并不等价。

给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。

题目数据保证答案肯定是一个 32 位 的整数。

 

class Solution {
    public int numDecodings(String s) {
        int n = s.length();
        // a = f[i-2], b = f[i-1], c=f[i]
        int a = 0, b = 1, c = 0;
        for (int i = 1; i <= n; ++i) {
            c = 0;
            if (s.charAt(i - 1) != '0') {
                c += b;
            }
            if (i > 1 && s.charAt(i - 2) != '0' && ((s.charAt(i - 2) - '0') * 10 + (s.charAt(i - 1) - '0') <= 26)) {
                c += a;
            }
            a = b;
            b = c;
        }
        return c;
    }
}

 (p.s. 第二题我看了几次都没想出来,感觉这个方法也够怪的,leetcode的题解也不太好理解)

后面看到了一个比较好理解的解法,这里放出来吧,但是运行速度又不太够了.....

class Solution {
    public int numDecodings(String s) {
        int n = s.length();
        s = " " + s;
        char[] cs = s.toCharArray();
        int[] f = new int[3];
        f[0] = 1;
        for (int i = 1; i <= n; i++) {
            f[i % 3] = 0;
            int a = cs[i] - '0', b = (cs[i - 1] - '0') * 10 + (cs[i] - '0');
            if (1 <= a && a <= 9) f[i % 3] = f[(i - 1) % 3];
            if (10 <= b && b <= 26) f[i % 3] += f[(i - 2) % 3];
        }
        return f[n % 3];
    }
}

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Frank.Ren

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值