- 博客(7)
- 收藏
- 关注
原创 李宏毅深度学习笔记5 - 第一讲 回归问题(regression)
第一个选择的model效果不太好,因此我们可以选择更复杂的model ,但是更复杂的模型可能会产生过拟合问题。我们可以重新定义loss函数来防止过拟合问题,这个方法叫做正则化(regularization)。我们可以把想到的所以特征都加进去,但这样也容易产生过拟合问题。返回到最初我我们选择的模型,重新选择模型。调整lamada可以调整曲线的平滑程度。把模型写成线性模型的形式如下。
2024-03-19 15:43:55 200 1
原创 李宏毅深度学习笔记3 - 第一讲 深度学习介绍
我们需要决定神经网络的结构,到底选多少层,每层有多少神经元通常靠经验和直觉决定。用梯度下降法选择更好的参数,这里与前面一样只不过是函数变复杂了。对于第二、三步,需要调整参数使loss越小越好。深度学习的深度表示有很多的隐藏层。
2024-03-18 14:25:41 550
原创 李宏毅深度学习笔记2 - 第一讲 深度学习简介
实际在做梯度下降时,会把很多的数据分成很多的小数据集(batch),只用一个batch算loss。每一次更新参数叫做update,把所有的batch都用过一遍叫做1epoch。可以用relu来代替sigmoid,两个relu可以组成sigmiod。调整参数可以获得不同形状的sigmoid函数,就可以近似预测函数。任何一个分段线性曲线都可以用常数加上特殊的函数表示。因此新的模型由简单的线性模型变成了更多参数的函数。当分割的片段足够多就可以表示连续的曲线。未知函数的更复杂,模型更新为。
2024-03-16 20:42:12 454
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人