- 博客(5)
- 收藏
- 关注
翻译 文章学习(二)综述类:数据驱动的类比设计:最先进的技术和未来的方向
DATA-DRIVEN DESIGN-BY-ANALOGY:STATE OF THE ART AND FUTURE DIRECTIONS摘要 类比设计(DbA)是一种设计方法,指的是从源领域得到灵感产生新的思路、机会或者设计应用于目标领域。类比设计有益于改善设计师的设计理念和打破定式思维。最近,日益普及的设计数据库以及飞速发展的数据科学和人工智能技术为开发数据驱动的方法和支持DbA的工具提供了新的机会。在这项研究中,调查了现有的数据驱动的DbA研究,并且根据数据、方法、和应用分为四类:即类比编码、检索
2021-08-02 15:34:54 1354 1
翻译 文章学习(一)方法类:利用CNN从专利图像导出设计特征向量
Deriving Design Feature Vectors for Patent Images Using Convolutional Neural Networks(Journal of Mechanical Design · January 2021)摘要 由于专利文件中包含这大型的,广泛的,大量的设计信息,为实现创新设计,设计者通常利用专利数据库去寻找灵感刺激。越来越多的类比设计工作采用了各种向量化方法,将设计文件关联在一起。然而,他们只关注了文本分析而忽略了视觉信息。工程设计和认知心理学研
2021-08-01 11:23:35 1115
原创 李宏毅机器学习2021学习笔记(3):GAN(生成对抗网络)
李宏毅机器学习2021学习笔记(3):GAN(生成对抗网络)各种GAN类别:https://github.com/hindupuravinash/the-gan-zooGenerator(生成网络)一个神经网络,实现输入噪音Z→输出生成样本Discriminator(判别网络)对样本打分,真实样本分数高,生成样本分数低(Generator产生的为虚构样本)如何迭代产生好结果的过程为使Discrimination不能区分样本是否真实,Generator需不断迭代使得能产生更能接近真实的样本,
2021-06-25 10:26:29 432
原创 李宏毅机器学习2021学习笔记(2):Self Attention
李宏毅机器学习2021学习笔记(2):Self Attention1.特点 传统机器学习深度学习任务一般为分类或者回归(输入为一个向量,输出为一个结果),而Self Attention有更复杂的输入输出,可以完成更复杂的任务。2.三种情况(1)每个向量输入有每个输出(并不孤立) 适用于词性标注(POS tagging)(2)多个向量输入只有1个输出 适用于情感分析(Sentiment analysis)(3)多个向量输入不确定个输出(seq2seq) 适用于语音识别、文本
2021-06-22 09:50:04 182
原创 李宏毅机器学习2021学习笔记(1):CNN
学习笔记:CNN(李宏毅机器学习2021)1.评价指标:交叉熵(Cross entropy)2.CNN本质:读取局部特征3.Receptive field 与 StrideReceptive filed:CNN中选取局部特征的区域大小(实际上就算取的很小也能把特征提取到,因为卷积层不止一层,第二层及之后会扩大提取范围),一般会取3*3(也可以改变形状),在超出矩阵范围(overlap)时一般取零(padding),或者均值等都可。Stride:CNN中Receptive filed每前进一步的
2021-06-21 22:06:04 331
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人