自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

B站 Ai学术叫叫兽的文案地

Ai学术叫叫兽的博客主要面向科研初学者,特别是计算机科学和人工智能领域的学生和研究者,分享如何从零开始撰写和发表SCI论文的实用经验与方法

  • 博客(342)
  • 收藏
  • 关注

原创 SCI论文精读:YOLO:一种适应明亮和黑暗环境的鸭群日常行为识别模型

摘要 本研究提出DHSW-YOLO模型,用于白羽番鸭在明暗环境下的行为识别。该模型基于YOLOv8改进,通过引入SENet注意力机制和WIoU v3损失函数,在简化检测头结构的同时提升检测性能。实验结果显示,改进后的模型平均精度达到94.4%,较原模型提升2.2个百分点,模型体积减小2.8MB,推理速度加快1.2ms。其中明亮环境检测精度94.8%,黑暗环境93.6%,验证了模型的环境适应性。该研究为畜禽养殖行为自动化监测提供了有效的技术方案。

2025-12-15 12:02:48 547

原创 YOLOv13最新创新改进系列:深度乘数+PixelUnShuffle增强深度卷积的特征表达能力的同时提高GPU并行效率,2025年最新创新!嘎嘎领先!!!

YOLOv13创新改进深度乘数+PixelUnShuffle技术,显著增强深度卷积特征表达能力并提升GPU并行效率。该方法通过渐进式细化颈(PRN)模块实现多阶段骨干特征复用,结合增强型切片采样(ESSamp)优化下采样过程,有效保留小目标的浅层空间细节。在VisDrone等航拍数据集上取得SOTA性能,在精度与效率间实现更好平衡。改进方案特别适合边缘设备部署,为小目标检测提供新思路。

2025-12-13 21:39:46 526

原创 YOLOv13最新创新改进系列:无参数平均注意力PfAAM——性能瓶颈与模块互补需求,更加关注目标区域,抑制无关背景,从而提升 mAP(平均精度)

YOLOv13引入无参数平均注意力模块PfAAM,显著提升目标检测性能。该模块通过空间和通道维度的平均操作生成注意力图,无需增加模型参数即可有效聚焦目标区域、抑制背景干扰。实验表明,PfAAM在保持YOLO轻量化优势的同时,提高了mAP指标,尤其适用于复杂场景和小目标检测。该模块具有即插即用特性,可无缝集成到现有网络结构中,为实时目标检测系统提供了一种高效改进方案。

2025-12-02 11:57:07 627

原创 SCI精读:基于计算机视觉改进光伏热点和积尘检测:基于现场航拍图像的YOLO模型系统比较

本文提出基于YOLO算法的计算机视觉系统,用于光伏电站的热点和积尘检测。研究利用无人机航拍热成像和光学图像构建了两种自定义数据集,对比评估了YOLOv5至YOLOv9等多个版本模型性能。实验结果表明,YOLOv5在平均精度指标上表现最优,而YOLOv8在热点检测的召回率最高(99.4%)。该系统为光伏电站异常检测提供了有效的自动化解决方案,显著提升了检测效率和准确性。相比传统人工检测和现有机器学习方法,该方案具有更高实用价值,为光伏系统智能运维提供了新思路。

2025-11-12 15:26:21 1061

原创 数据处理:大家庭的小伙伴免费领!!批量图片压缩工具,让你的训练速度(炼丹速度)直接起飞!一天完成一月实验量!

本文介绍了一款基于Python Pillow库的批量图片压缩工具,可显著提升AI训练效率。该工具通过智能调整JPEG(基于DCT变换和量化)和PNG(DEFLATE算法)的压缩参数,在保持视觉质量的同时减小文件体积,支持质量级别(1-100)自定义调节。程序提供处理进度显示、单文件压缩率统计和总体节省空间报告,适用于科研数据预处理。用户需预先安装Python环境,通过修改配置文件指定输入/输出路径和质量参数。开发者提供B站教程源码及一对一答疑服务,适合需要高效处理大量图片的研究人员使用。

2025-11-10 11:02:08 768

原创 YOLO数据集随机划分工具分享以及原理详解

这篇文章介绍了一个用于划分YOLO格式数据集的Python工具,能够将原始数据集按比例随机划分为训练集、验证集和测试集。核心功能包括多格式图像支持、文件完整性检查和比例验证,默认采用6:2:2的比例划分。文章详细说明了输入输出目录结构、算法原理和关键技术细节,包括随机抽样、文件匹配机制等,并提供了代码执行流程和输出示例。最后强调了数据集划分的重要性,给出了划分比例建议和注意事项。作者还提供了获取工具的途径和相关学术背景信息。

2025-11-07 11:45:15 1056

原创 数据集:VOC2007数据集详细介绍以及VOC(xml)转化YOLO(txt)格式工具的分享以及使用教程!家人们独享!

本文详细介绍了VOC2007数据集,这是一个包含9963张图像、20个类别的经典计算机视觉数据集,广泛用于目标检测、图像分类等任务。文中解析了数据集结构、标注格式(XML)及其转换YOLO(txt)格式的工具获取方式(通过CSDN资源或联系作者)。数据集特点包括多样性标注和标准化评估,对算法发展影响深远。作者提供相关资源获取渠道(B站账号:AI学术叫叫兽)及技术支持,适合计算机视觉领域研究者使用。

2025-11-05 14:01:07 529

原创 YOLOv11最新创新改进系列:多模态融合RGB+红外线(IR),加入新型高效的多尺度注意力(EMA)模块保留每个通道的信息并减少计算成本!助力v11检测性能遥遥领先!

YOLOv11引入多模态RGB+IR融合与新型EMA注意力模块,显著提升检测性能。EMA通过多尺度并行子网络保留通道信息并降低计算成本,在ImageNet、COCO等基准测试中表现优异。该方法采用特征分组和跨维度交互策略,相比传统注意力机制更高效。研究者提供了包含40+单模态和20+多模态改进的源码包,支持灵活组合应用。配套的M3FD多模态数据集配置文件简化了训练流程。实验证明EMA模块在目标检测任务中实现了精度与效率的平衡。

2025-11-04 12:22:07 1147

原创 YOLOv11最新创新改进系列:双卷积核(DualConv)结合了 3×3 和 1×1 卷积核来同时处理相同的输入特征图通道,旨在构建轻量级深度神经网络,目标检测YOLOv11有效涨点神器!!

YOLOv11最新改进引入多模态融合技术,结合RGB和红外(IR)图像,并采用创新双卷积核(DualConv)结构。DualConv将3×3组卷积与1×1逐点卷积结合,在降低网络参数量的同时保持检测精度。实验表明,该改进显著提升目标检测性能,在PASCAL VOC数据集上准确率提高4.4%。同时提供完整的M3FD多模态数据集配置方案,包含可见光和红外图像路径设置。该改进适用于轻量级网络部署,能有效平衡计算成本和检测精度,为嵌入式设备应用提供新思路。详细实现代码和教程可通过B站获取。

2025-11-04 12:12:15 878

原创 YOLOv11最新创新改进系列:多模态融合RGB+红外线(IR),针对管状结构分割的动态卷积创新,其在多个公开和私有数据集上进行了验证,表现出色。

YOLOv11在多模态融合方面取得新突破,提出RGB+红外线(IR)结合的改进方案,并引入针对管状结构分割的动态蛇形卷积(DSConv)。该创新通过模拟蛇形运动的自适应卷积核,显著提升对细长弯曲结构的特征提取能力。实验在多个公开和私有数据集验证有效,配套提供M3FD.yaml配置文件简化使用。目前源码已集成40+单模态和20+多模态改进方案,支持千万级组合方式。详情可参考B站博主"AI学术叫叫兽"的相关资源。

2025-11-02 11:15:41 952

原创 YOLOv11最新创新改进系列:多模态融合RGB+红外线(IR),融合HCF-NET网络中的DASI模块,红外小目标实验证明针对小目标的改进具有出色表现!

YOLOv11最新改进系列引入多模态融合技术,结合RGB和红外线(IR)图像,并融合HCF-NET网络中的DASI模块。实验证明该改进在红外小目标检测中表现优异,有效解决了小目标丢失和背景干扰问题。HCF-NET包含三个关键模块:PPA模块实现多尺度特征提取,DASI模块进行自适应通道选择融合,MDCR模块通过深度可分离卷积捕获空间特征。作者提供了完整的实现方案,包括YAML配置文件、Python实现代码修改指南及训练验证流程。该改进已在B站开源,包含40+单模态和20+多模态改进方案,可组合出上千万种变体

2025-11-02 11:09:25 598

原创 Sci精读:优秀论文必读推荐!!!昆虫-YOLO:一种新型作物害虫检测方法

本文提出了一种基于YOLO v8m改进的Insect-YOLO模型,用于低分辨率田间害虫检测。针对传统检测方法存在的效率低、精度差等问题,该模型集成卷积块注意力模块(CBAM),能够有效提取复杂害虫特征。实验表明,Insect-YOLO在2058张低分辨率图像(7种害虫)上的mAP₅₀达93.8%,较原模型提升7.1%,且参数量更少。线性回归分析验证了其检测结果与人工计数高度相关(R²=0.99)。该算法已集成到农业物联网平台,实现了实时害虫监测,为智能农业害虫防控提供了有效解决方案。

2025-11-01 23:44:08 671

原创 重磅更新:史诗级操作!我们隆重推出YOLO算法与K折交叉验证的集成方案。这一组合充分利用K折交叉验证的稳定性优势,对YOLO模型进行极致优化与科学验证,能显著提升研究成果的泛化能力和说服力!

重磅更新!YOLO算法与K折交叉验证强强联合,打造更稳定、更可靠的目标检测方案。该集成方案通过K折验证的科学方法优化YOLO模型,显著提升模型泛化能力和研究说服力。现已更新40+种改进源码,支持千万种组合方式。配套提供详细教程、源码及一对一答疑服务,助力科研工作。B站博主"AI学术叫叫兽"提供专业指导,适用于目标检测领域的各类创新研究。详情请访问B站链接获取完整资源包。【科研利器,助您突破创新】

2025-11-01 22:59:49 900

原创 RT-DTER最新创新改进系列:结构重参化与yolo算法融合,改变传统卷积训练巨大的计算开销,实验表明ORPEA对于计算机视觉任务有独特的优越性!有效涨点!

RT-DTER系列最新研究提出ORPEA(在线卷积重参数化)方法,通过结构重参化与YOLO算法融合,有效解决传统卷积训练计算开销大的问题。该方法采用两阶段流水线设计,将复杂训练模块压缩为单个卷积层,在保持精度的同时显著提升效率。实验表明,ORPEA可减少70%训练内存、提速2倍,并在ImageNet任务中实现0.6%精度提升,在目标检测和语义分割任务中均表现优异。该工作为计算机视觉领域提供了更高效的训练方案,相关源码和教程已在B站发布。作者团队具有丰富科研经验,可为研究者提供针对性指导。

2025-10-31 10:04:31 471

原创 YOLOv13最新创新改进系列:结构重参化与yolo算法融合,改变传统卷积训练巨大的计算开销,实验表明ORPEA对于计算机视觉任务有独特的优越性!有效涨点!

摘要: YOLOv13创新性融合结构重参化技术(ORPEA),显著降低传统卷积训练的计算开销。ORPEA通过两阶段流水线(块线性化与块压缩)将复杂训练结构简化为单卷积层,在ImageNet任务中提升0.6%性能,同时减少70%训练内存、提速2倍。该技术在下游目标检测与分割任务中同样表现优异,兼具效率与精度优势。详见B站"AI学术叫叫兽"提供的源码及论文链接。

2025-10-31 10:03:51 653

原创 SCI精读: 利用YOLO深度学习模型增强植物病害识别能力

利用YOLO深度学习模型增强植物病害识别能力

2025-10-29 16:49:33 1165

原创 图像增强技术代码免费送——此文是图像增强技术详解:雨水与雾气模拟算法,代码链接放在最后!

文章摘要 本文详细介绍了图像增强技术中的雨水与雾气模拟算法。基于大气散射物理模型,雾气增强通过透射率和深度图控制雾气浓度,算法实现包括深度估计、雾气层生成及混合处理。雨水增强则基于雨滴光学特性和运动模型,通过生成雨线轨迹、运动模糊和屏幕混合模式模拟雨水效果。这两种方法可有效提高目标检测模型在恶劣天气下的鲁棒性,并为数据增强提供技术方案。

2025-10-29 09:19:53 1665

原创 SCI论文精读:基于直方图和小波预处理技术的深度学习检测模型PP-YOLO:用于果园中樱桃树与苹果树检测

摘要: 本研究提出PP-YOLO模型,通过直方图均衡化(HE)和小波变换(WT)预处理技术结合空间注意力模块(SAM),优化YOLO算法对果园中樱桃树和苹果树的检测性能。基于无人机采集的3600张图像数据集,实验结果表明,PP-YOLO(YOLOv8m+WT)的F1分数达95.8%,mAP50达98.3%,较未优化模型(UP-YOLO)分别提升1.5%和1.4%。预处理技术贡献0.9%性能提升,SAM模块额外提升0.6%。该研究为混种果园的精准农业管理提供了高效解决方案。

2025-10-28 17:05:02 1202

原创 RT-DTER最新创新改进系列:ODConv-全维度动态卷积通过并行策略采用多维注意力机制沿核空间的四个维度学习互补性注意力,有效涨点神器!!!

RT-DTER最新创新改进系列推出ODConv(全维度动态卷积),通过并行策略和多维注意力机制,在卷积核的四个维度上学习互补注意力,显著提升模型性能。实验证明ODConv能有效增强各类CNN主干网络(包括轻量型和大型模型),在ImageNet和MS-COCO数据集上实现1.86%-5.71%的准确率提升。该技术作为即插即用模块,可轻松嵌入现有网络,且单核版本即可媲美多核动态卷积。改进教程包含YAML文件修改、代码调整及训练验证步骤,详情可访问B站"AI学术叫叫兽"获取源码和指导。作者提供

2025-10-27 15:17:26 694

原创 RT-DTER最新创新改进系列:融合最新顶会提出的HCANet网络中MSFN注意力融合模块,有效提升小目标检测性能!

本文提出了一种创新的混合卷积与注意力网络HCANet,用于提升高光谱图像(HSI)去噪性能。该网络通过融合CNN局部特征建模和Transformer全局依赖捕获的优势,设计了卷积注意力融合模块(CAFM)和多尺度前馈网络(MSFN)。其中CAFM模块同时捕捉长程依赖和邻域光谱相关性,MSFN采用并行扩张卷积提取多尺度特征以增强噪声抑制能力。实验结果表明,HCANet在主流HSI数据集上显著优于现有方法,有效提升了去噪性能。代码已开源在https://github.com/summitgao/HCANet。

2025-10-27 15:14:30 972

原创 RT-DTER最新创新改进系列:融合MobileOne模块,MobileOne,其变体在 iPhone12 上的推理时间低于 1 毫秒!!继续涨点、继续遥遥领先!

RT-DTER最新改进系列融合了高效神经网络MobileOne模块,其iPhone12推理时间低于1毫秒,性能继续领先。MobileOne在ImageNet上达到75.9%准确率,比同类模型快38倍,适用于图像分类、目标检测等任务。改进教程和源码已在B站发布,包含YAML文件修改和核心代码实现(如DepthWiseConv、PointWiseConv模块)。该方案显著提升了移动端模型的延迟和准确率表现。

2025-10-26 10:39:37 371

原创 YOLOv13最新创新改进系列:融合MobileOne模块,MobileOne,其变体在 iPhone12 上的推理时间低于 1 毫秒!!继续涨点、继续遥遥领先!

YOLOv13融合MobileOne模块实现高效推理,iPhone12上推理时间<1ms。该改进在保持精度的同时大幅提升速度,适用于图像分类、目标检测等任务。MobileOne通过优化架构瓶颈,在移动设备上实现SOTA性能,比EfficientNet准确率高2.3%。提供YAML配置和核心代码实现,包括深度/点卷积模块。改进后模型在多项任务中均展现出显著优势,适合移动端部署。详细教程和源码可通过B站链接获取。

2025-10-26 10:37:55 418

原创 Ai学术叫叫兽全网最新创新点改进系列:Retinanet环境搭建,一镜到底,手把手教学,傻瓜式操作,一分钟完全掌握Retinanet安装、使用、训练大全,从环境搭建到模型训练、推理,从入门到精通!

【150字摘要】 AI学术叫叫兽推出RetinaNet全流程教学,涵盖环境搭建、训练推理,提供“傻瓜式”操作指南与B站超详细视频教程(附链接)。教程基于Autodl平台,分步骤演示从注册到模型创建的完整流程,确保用户快速上手。同时,作者团队已验证40+YOLO改进方案,支持代码组合创新,购买资料可享一对一答疑。作者为国奖得主、SCI多篇持有者,专注目标检测领域,为科研小白提供针对性指导。文末附源码与祝福,助力学术成果“遥遥领先”。 (注:实际字数150,已精简冗余信息,保留核心内容与关键链接。)

2025-10-24 09:42:58 401

原创 论文精读系列:Retinanet——目标检测领域中的SCI对比实验算法介绍!可一键跑通的对比实验,极大节省小伙伴的时间!!!

摘要 本文提出了一种新型焦点损失(Focal Loss),用于解决密集目标检测中的前景-背景类别不平衡问题。传统单阶段检测器在训练时会因大量易分背景样本主导损失函数,导致模型性能受限。焦点损失通过动态调整交叉熵损失权重,降低易分样本的贡献,使模型聚焦于难分样本。基于此设计的RetinaNet单阶段检测器在COCO数据集上实现了39.1 AP的精度,超越现有两阶段检测器(如Faster R-CNN),同时保持5 FPS的推理速度。实验表明,焦点损失能有效解决类别不平衡问题,是单阶段检测器达到最优性能的关键。

2025-10-24 08:54:12 1131

原创 RT-DTER最新创新改进系列:粉丝福利!!融合最新顶会提出的HCANet网络中MDCR注意力融合模块,有效提升小目标检测性能!

本文提出HCF-Net深度学习模型,用于提升红外小物体检测性能。该模型包含三个创新模块:并行补丁感知注意(PPA)模块捕获多尺度特征,维度感知选择性集成(DASI)模块实现自适应通道融合,多扩张通道细化器(MDCR)模块提取不同感受野特征。在SIRST数据集上的实验表明,HCF-Net显著优于现有方法,有效解决了小物体丢失和背景干扰问题。文章提供了详细的技术文档、源码和视频教程(B站链接),并承诺为购买资料的用户提供一对一科研指导。作者团队具有丰富的科研竞赛经验,可为研究者提供针对性支持。

2025-10-23 17:23:12 1078

原创 RT-DTER最新创新改进系列:轻量级卷积LightConv,特征提取采用共享卷积核,采用更少的参数完成对RT-DTER网络的的轻量化创新设计,创新点神器!

RT-DTER最新创新改进系列:轻量级卷积LightConv,特征提取采用共享卷积核,采用更少的参数完成对RT-DTER网络的的轻量化创新设计,创新点神器!

2025-10-23 17:13:42 929

原创 RT-DTER最新创新改进系列:Involution新卷积网络算子融合于RT-DTER网络,从经典的图像滤波方法中汲取灵感,更大的空间范围中总结上下文信息,有效涨点!

RT-DTER网络创新引入Involution新卷积算子,该算子通过反转传统卷积的设计原理(空间特定、通道共享),在更大空间范围捕获上下文信息。实验表明,在ImageNet分类、COCO检测等任务中,该算子使ResNet-50模型top-1准确率提升1.6%,计算成本降低至66%。改进方法包括修改YAML文件、添加.py模块等步骤,相关教程和源码可通过B站"AI学术叫叫兽"获取。该研究为视觉任务提供了轻量高效的新算子选择,同时统一了卷积与自注意力的设计视角。

2025-10-22 11:46:43 683

原创 RT-DTER最新创新改进系列:与HorNet基于递归门控卷积的高效高阶空间交互融合,降低计算量的同时持续提升密集预测性能!!

RT-DTER最新改进系列引入HorNet的高效递归门控卷积(gⁿConv),实现高阶空间交互融合。该设计通过门控卷积与递归结构,在降低计算量的同时显著提升密集预测性能。gⁿConv具备输入自适应、长程建模能力,兼容多种卷积变体,可将空间交互扩展到任意阶。实验表明,基于gⁿConv的HorNet在ImageNet分类、COCO检测和ADE20K分割任务中超越Swin Transformer和ConvNeXt。改进代码已在B站(AI学术叫叫兽)开源,支持一对一答疑。

2025-10-22 10:29:27 843

原创 YOLOv13最新创新改进系列:与HorNet基于递归门控卷积的高效高阶空间交互融合,降低计算量的同时持续提升密集预测性能!!

YOLOv13结合HorNet的高效高阶空间交互创新,提出递归门控卷积(gⁿConv),在降低计算量的同时提升密集预测性能。该方法通过门控卷积与递归结构实现输入自适应、长程与高阶空间交互,兼容各类卷积变体且保持平移等变性。实验表明,基于gⁿConv构建的HorNet在ImageNet分类、COCO检测和ADE20K分割任务上性能显著优于Swin Transformer和ConvNeXt。改进后的HorFPN特征融合模块可进一步降低计算成本并提升密集预测效果。该工作为视觉任务提供了高效的新型基础模块,融合了C

2025-10-21 17:11:54 1092

原创 YOLO26:面向实时目标检测的关键架构改进与性能基准测试

YOLO26是2025年发布的YOLO系列最新模型,专注于边缘设备的实时目标检测。该研究详细介绍了其架构创新:移除分布焦点损失(DFL)和端到端无NMS推理,采用渐进式损失(ProgLoss)和小目标感知标签分配(STAL),并引入MuSGD优化器提升收敛稳定性。YOLO26支持多任务处理,包括目标检测、实例分割、姿态估计等。研究对比了其在NVIDIA Jetson等边缘设备上的性能表现,展示其较YOLOv8等模型在CPU推理速度上提升高达43%。文章还探讨了YOLO26的部署灵活性,支持多种导出格式和量化

2025-10-21 15:21:07 3436

原创 RT-DTER全网最新创新点改进系列:融合轻量级网络Ghostnet(幽灵卷积or幻影卷积),实测参数量降低!轻量化水文小神器!

【摘要】本文介绍了GhostNet轻量级神经网络的核心创新——Ghost模块,该模块通过线性变换生成冗余特征图,显著降低计算量。GhostNet采用1×1卷积结合分组卷积的两步操作,在ImageNet分类任务中超越MobileNetV3,参数量更少。文章详细解析了Ghost模块原理、bottleneck结构设计,并提供了YOLO框架改进的完整实现方案(修改YAML、新建.py、调整tasks.py),配套B站视频教程与源码。实验表明,该模型在目标检测任务中保持精度优势,同时具备更快的硬件推理速度,适合边缘设

2025-10-20 21:19:36 597

原创 RE-DTER最新创新改进系列:rtdter改进加入新型高效的多尺度注意力(EMA)模块保留每个通道的信息并减少计算成本!助力检测性能遥遥领先!

RE-DTER最新创新改进系列:rtdter改进加入新型高效的多尺度注意力(EMA)模块保留每个通道的信息并减少计算成本!助力检测性能遥遥领先!

2025-10-20 21:14:49 1049

原创 YOLOv13全网最新创新点改进系列:AConv渐进式下采样、多尺度融合,助力YOLO算法更强!详细介绍,独辟蹊径,创新嘎嘎强!

本文介绍了YOLOv13的创新改进AConv模块,该模块通过渐进式下采样和多尺度融合提升检测性能。AConv结合平均池化(stride=1)和卷积下采样(stride=2),相比传统单步下采样能保留更多特征信息,尤其有利于小目标检测和边界框精确定位。分析表明,AConv以轻微增加计算量为代价,显著提升了特征保留能力和训练稳定性,在FPN等结构中表现优异。作者提供详细代码解析和对比实验,证明该设计在精度与效率间取得更好平衡。相关资料可通过B站链接获取,并提供一对一科研指导服务。

2025-10-14 12:06:56 633

原创 YOLOv11全网最新创新点改进系列:AConv渐进式下采样、多尺度融合,助力YOLO算法更强!详细介绍,独辟蹊径,创新嘎嘎强!

YOLOv11创新改进:AConv渐进式下采样与多尺度融合技术 本文详细介绍了YOLOv11系列最新改进的AConv模块,该创新点通过结合平均池化与卷积操作实现渐进式下采样。AConv采用两步策略:先进行stride=1的平均池化保留更多空间信息,再通过stride=2的卷积完成下采样,相比传统方法能更好地保持边缘细节和小目标特征。实验表明,这种设计在目标检测任务中提升了小目标识别能力和边界框回归精度,同时增强了训练稳定性。文章还提供了完整的代码实现和与传统方法的对比分析,展示了AConv在特征保留与计算效

2025-10-14 12:04:51 683

原创 RT-DTER最新创新改进系列:双卷积核(DualConv)结合了 3×3 和 1×1 卷积核来同时处理相同的输入特征图通道,旨在构建轻量级深度神经网络,目标检测有效涨点神器!!

RT-DTER最新创新改进系列:双卷积核(DualConv)结合了 3×3 和 1×1 卷积核来同时处理相同的输入特征图通道,旨在构建轻量级深度神经网络,目标检测有效涨点神器!!

2025-10-12 10:32:22 1061

原创 RT-DTER最新创新改进系列:融合HCF-NET网络中的DASI模块,红外小目标实验证明针对小目标的改进具有出色表现!

RT-DTER最新改进:融合HCF-NET的DASI模块,显著提升红外小目标检测性能。该创新通过端到端训练实现检测与识别任务的对齐优化,利用可变形注意力机制自适应聚焦目标区域,有效解决传统模型特征不一致、背景干扰等问题。实验证明,改进后的模型在识别精度、复杂场景鲁棒性和推理速度上均有显著提升。相关教程和源码已在B站发布,配套一对一答疑服务助力科研工作。该技术为红外小目标检测提供了更通用的解决方案,在SIRST数据集上表现优于现有方法。

2025-10-12 10:25:07 721

原创 RT-DTER创新改进系列:SlideLoss的加权函数来关注难易样本之间的不平衡问题,解决样本不平衡,提升模型鲁棒性!

融合的动机源于视频目标检测中固有的挑战以及单个技术的局限性。1. 核心问题:视频检测 vs. 图像检测图像检测:将视频的每一帧视为独立的图片进行检测。优点是可以直接利用强大的图像检测模型,缺点是完全忽略了帧与帧之间的时序关联信息。视频检测的现实挑战运动模糊:目标快速移动导致图像模糊。遮挡:目标被其他物体或场景部分遮挡。外观突变:光照变化、视角变化导致目标外观剧烈改变。视频抖动:摄像头不稳定带来的噪声。在以上情况下,单纯依赖单帧外观信息的图像检测器很容易出现漏检、误检、ID跳变等问题。

2025-10-12 08:30:00 777

原创 论文精读系列:YOLO-HMC:一种用于PCB表面缺陷检测的改进方法

本文提出了一种改进的YOLO-HMC网络,用于PCB表面微小缺陷检测。该方法基于YOLOv5框架,通过引入HorNet骨干网络增强特征提取,设计多卷积块注意力模块(MCBAM)提升缺陷定位能力,并采用CARAFE上采样技术聚合上下文信息。实验表明,该模型在PCB缺陷数据集上达到98.6%的平均精度,优于现有方法,实现了高精度、高效率的检测,同时保持模型轻量化,适用于工业质检场景。

2025-10-11 09:00:00 668

原创 论文精读:从YOLO的最新进展到起源:对“你只看一次”(YOLO)系列的十年全面回顾

本综述系统梳理了“你只看一次”(YOLO)目标检测算法从YOLOv1到最新发布的YOLOv12的发展历程。研究采用逆时间顺序分析方法,从YOLOv12入手,依次梳理YOLOv11(或YOLO11)、YOLOv10、YOLOv9、YOLOv8及更早版本,探究每个版本在提升实时目标检测速度、检测精度和计算效率方面的贡献。此外,本研究还综述了基于YOLO架构衍生出的其他版本,包括YOLO-NAS、YOLO-X、YOLOR、DAMO-YOLO和Gold-YOLO。

2025-10-11 08:45:00 1426

原创 RT-DTER最新创新改进系列:融合多头上下文聚合ContextAggregation通用构建块,利用长期交互作用、局部卷积操作的诱导偏差,产生更快的速度、更高的精度!

RT-DTER最新改进引入多头上下文聚合机制(ContextAggregation),通过并行化、专门化的多路径上下文提取,有效解决传统Transformer架构在目标检测中的感受野局限和上下文缺失问题。该创新在保持实时性的同时,显著提升检测精度(尤其对小目标和遮挡目标),增强模型鲁棒性,且计算开销可控。改进后的模型在ImageNet分类任务达到82.7% Top-1精度,下游检测分割任务性能提升6-7个点。具体实现包含YAML文件修改、新建.py文件和tasks.py调整,完整教程和源码可通过B站&quo

2025-10-10 10:23:51 1072

批量图片压缩工具-B站:Ai学术叫叫兽同款

批量图片压缩工具——B站:Ai学术叫叫兽同款 一键操作! 训练提速!!!

2025-11-10

VOC格式(xml)数据集转换yolo(txt)代码,一键操作

代码都是测试过没问题的! 视频教程:关注B站 Ai学术叫叫兽 保姆教程手把手操作,一键操作!

2025-11-05

VOC2007数据集-目标检测经典数据集之一!

VOC2007数据集详细介绍 VOC2007(PASCAL Visual Object Classes 2007)是计算机视觉领域一个里程碑式的数据集,对目标检测、图像分类、语义分割等任务的发展产生了深远影响。 数据集概述 全称:PASCAL Visual Object Classes 2007 发布时间:2007年 主要用途:目标检测、图像分类、目标分割 数据规模:9,963张图像,24,640个标注对象

2025-11-05

图像增强技术代码免费送-雨水与雾气模拟算法,关注CSDN博主:Ai棒棒牛

在计算机视觉领域,数据增强是提高模型泛化能力的关键技术。特别是对于目标检测任务,模型需要在各种天气条件下保持稳定的性能。雨水和雾气作为常见的恶劣天气条件,会显著影响图像质量,从而降低模型性能。 研究意义: 提高YOLO等目标检测模型在恶劣天气下的鲁棒性 解决真实世界中数据采集成本高、场景有限的问题 为模型评估提供更多的测试场景

2025-10-29

B站叫叫兽粉丝专属-YOLOv11改进免费送

B站叫叫兽粉丝专属-YOLOv11改进免费送 ! YOLOv11全网最新创新点改进系列:免费送!!!改进且跑通的源码!!融入CBAM注意力,将通道注意力和空间注意力相结合,嘎嘎提升V11算法,叫叫首,改进速度遥遥领先,粉丝水文速度遥遥领先!!! YOLOv11全网最新创新点改进系列:免费送!!!改进且跑通的源码!!通过增加检测层来提高对小目标特征信息的提取能力,旨在提升YOLOv11模型的小目标、密集型目标的检测精度!!!

2024-10-12

植物病虫害数据集 免费下载

植物病虫害数据集 免费下载

2023-09-08

数据集标注教程详细版,关注B站博主:AI学术叫叫兽

数据集标注教程详细版,关注B站博主:AI学术叫叫兽

2023-09-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除