线性代数学习【逆矩阵】

本文详细探讨了矩阵的行列式性质、伴随矩阵的概念及计算、逆矩阵的存在条件与求解方法,以及解矩阵方程时的常见错误。重点介绍了伴随矩阵与逆矩阵的关系,并给出了求逆矩阵的伴随矩阵法和初等变换法。同时,阐述了逆矩阵的性质,如逆矩阵的逆仍是原矩阵等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、方阵的行列式的性质
1、|A^T| = |A|
2、|kA| = k^n · |A|
3、|AB| = |A| · |B|
二、伴随矩阵
1、只有方阵才有伴随矩阵
2、伴随矩阵A^*:求所有元素的代数余子式,按行求的代数余子式按列放,构成矩阵
3、AA^* = A^*A = |A|E
4、|AA^*| = ||A|E|→|A|·|A^*| = |A|^n→|A^*| = |A|^(n-1)
三、逆矩阵
1、逆矩阵:设A为n阶方阵,存在同阶方阵B,使得AB=BA=E,则A的逆矩阵A^-1 = B
2、未必所有方阵均可逆,比如零矩阵
3、如果方阵可逆,逆矩阵唯一
四、方阵可逆条件
1、若矩阵满足|A| ≠ 0,则其非奇异,非退化,满秩
2、A可逆 <=> |A| ≠ 0,A^-1 = 1/|A| · A^*
3、若A、B都为n阶方阵,|A| ≠ 0 且 (AB = E 或 BA = E),则A^-1 = B
五、求逆矩阵方法
1.伴随矩阵法
2.初等变换法(一般用这个)
六、解矩阵方程常见错误总结
1.注意提的方向
2.矩阵不能减一个数字,需要补一个E
3.永远不要把矩阵放在分母上
4.一定要先判断矩阵可逆,再用逆矩阵
七、逆矩阵性质
1、A可逆,则A^-1可逆,且(A^-1)^-1 = A
2、A,B均可逆,则AB可逆,(AB)^-1 = B^-1 A^-1
3、A可逆,则有
(1)A^T可逆
(2)(A^T)^-1 = (A^-1)^T
4、若 k ≠ 0,(kA)^-1 = A^-1/k
5、若A可逆,|A^-1| = |A|^-1
6、若A可逆,A^*也可逆,(A^*)^-1 = A/|A|
八、伴随矩阵A^*小专题
1、求代数余子式,按行求,按列放
2、AA^* = A^*A = |A|E
3、|A^*| = |A|^(n-1)
4、A^-1 = A^*/|A|, A^* = |A|A^-1
5、(A^*)^* = |A|^(n-2) A
6、((A^*)^*)^* = |A|^((n-1)(n-2)+1) A^-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值