一、方阵的行列式的性质
1、|A^T| = |A|
2、|kA| = k^n · |A|
3、|AB| = |A| · |B|
二、伴随矩阵
1、只有方阵才有伴随矩阵
2、伴随矩阵A^*:求所有元素的代数余子式,按行求的代数余子式按列放,构成矩阵
3、AA^* = A^*A = |A|E
4、|AA^*| = ||A|E|→|A|·|A^*| = |A|^n→|A^*| = |A|^(n-1)
三、逆矩阵
1、逆矩阵:设A为n阶方阵,存在同阶方阵B,使得AB=BA=E,则A的逆矩阵A^-1 = B
2、未必所有方阵均可逆,比如零矩阵
3、如果方阵可逆,逆矩阵唯一
四、方阵可逆条件
1、若矩阵满足|A| ≠ 0,则其非奇异,非退化,满秩
2、A可逆 <=> |A| ≠ 0,A^-1 = 1/|A| · A^*
3、若A、B都为n阶方阵,|A| ≠ 0 且 (AB = E 或 BA = E),则A^-1 = B
五、求逆矩阵方法
1.伴随矩阵法
2.初等变换法(一般用这个)
六、解矩阵方程常见错误总结
1.注意提的方向
2.矩阵不能减一个数字,需要补一个E
3.永远不要把矩阵放在分母上
4.一定要先判断矩阵可逆,再用逆矩阵
七、逆矩阵性质
1、A可逆,则A^-1可逆,且(A^-1)^-1 = A
2、A,B均可逆,则AB可逆,(AB)^-1 = B^-1 A^-1
3、A可逆,则有
(1)A^T可逆
(2)(A^T)^-1 = (A^-1)^T
4、若 k ≠ 0,(kA)^-1 = A^-1/k
5、若A可逆,|A^-1| = |A|^-1
6、若A可逆,A^*也可逆,(A^*)^-1 = A/|A|
八、伴随矩阵A^*小专题
1、求代数余子式,按行求,按列放
2、AA^* = A^*A = |A|E
3、|A^*| = |A|^(n-1)
4、A^-1 = A^*/|A|, A^* = |A|A^-1
5、(A^*)^* = |A|^(n-2) A
6、((A^*)^*)^* = |A|^((n-1)(n-2)+1) A^-1