项目介绍
1.数据概况
- 本数据为上牌汽车的销售数据,分为乘用车辆和商用车辆
- 数据包含销售相关数据与汽车具体参数
2.数据项包括
- 省0,月1,市2,区县3,年4,车辆型号5,制造商6,品牌7,车辆类型8,所有权9,
- 使用性质10,数量11,发动机型号12,排量13,功率14,燃料种类15,车长16,车宽17,车高18,车厢长19,
- 车厢宽20,车厢高21,轴数22,轴距23,前轮距24,轮胎规格25,轮胎数26,总质量27,整备质量28,核定X质量29,
- 核定载客30,准牵引质量31,底盘企业32,底盘品牌33,底盘型号34,发动机企业35,车辆名称36,年龄37,性别38
3.输入数据
- 数据量太大,此处复制不方便,自行百度

需求分析👇👇
汽车行业市场分析
1.通过统计乘用车辆(非营运)和商用车辆(营运)的数量和销售额分布
- CountMap
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* 1.1通过统计乘用车辆(非营运)和商用车辆(其他)的数量和销售额分布
*/
public class CountMap extends Mapper<LongWritable, Text, IntWritable, LongWritable> {
private IntWritable intWritable = new IntWritable();
private LongWritable longWritable = new LongWritable();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] split = value.toString().trim().split(",");
//月1 数量11
if (split != null && split.length > 11 && split[11] != null && !"".equals(split[11].trim())) {
try {
intWritable.set(Integer.parseInt(split[1]));
longWritable.set(Long.parseLong(split[11]));
context.write(intWritable, longWritable);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
- CountCombine
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.logging.Logger;
/**
* @program: Hadoop_MR
* @description:
* @author: 作者
* @create: 2022-06-21 23:28
*/
public class CountCombine extends Reducer<Text, LongWritable, Text, LongWritable> {
private Logger logger = Logger.getLogger(CountCombine.class.getName());
private LongWritable res = new LongWritable();
public CountCombine() {
logger.info("CountCombine的构造方法,是单例吗?");//是
}
@Override
protected void setup(Context context) throws IOException, InterruptedException {
logger.info("CountCombine的setup执行时机");//开始一次
}
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
logger.info("CountCombine的cleanup执行时机");//结束一次
}
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
Long sum = new Long(0);
for (LongWritable val : values) {
sum += val.get();
}
res.set(sum);
logger.info("combine合并:" + key.toString() + ":" + res.get());
context.write(key, res);
}
}
- CountReduce
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.logging.Logger;
/**
* @program: Hadoop_MR
* @description:
* @author: 作者
* @create: 2022-06-21 23:34
*/
public class CountReduce extends Reducer<Text, LongWritable, Text, Text> {
private Logger logger = Logger.getLogger(CountCombine.class.getName());
Map<String, Long> map = new HashMap<>();
double all = 0;
public CountReduce() {
logger.info("CountReduce的构造方法,是单例吗?");
}
@Override
protected void setup(Context context) throws IOException, InterruptedException {
logger.info("CountReduce的setup执行时机");
}
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long sum = 0;
for (LongWritable val : values) {
sum += val.get();
}
all += sum;
map.put(key.toString(), sum);
logger.info("CountReduce的reduce:" + key.toString() + ":" + sum);
}
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
logger

该博客介绍了使用Hadoop MapReduce进行汽车行业市场分析的多个任务。首先,统计了乘用车辆和商用车辆的数量和销售额分布。接着,计算了山西省2013年每个月汽车销售数量的比例。然后,分析了2014年4月份安徽省各市区县汽车销售比例。最后,涉及了买车人群的性别比例及其购车选择。通过MapReduce作业,实现了数据的聚合和比例计算,输出了详细的统计结果。
最低0.47元/天 解锁文章
1007

被折叠的 条评论
为什么被折叠?



