MapReduce项目案例4——乘用车辆和商用车辆销售数据分析

该博客介绍了使用Hadoop MapReduce进行汽车行业市场分析的多个任务。首先,统计了乘用车辆和商用车辆的数量和销售额分布。接着,计算了山西省2013年每个月汽车销售数量的比例。然后,分析了2014年4月份安徽省各市区县汽车销售比例。最后,涉及了买车人群的性别比例及其购车选择。通过MapReduce作业,实现了数据的聚合和比例计算,输出了详细的统计结果。

项目介绍

1.数据概况

  • 本数据为上牌汽车的销售数据,分为乘用车辆和商用车辆
  • 数据包含销售相关数据与汽车具体参数

2.数据项包括

  • 省0,月1,市2,区县3,年4,车辆型号5,制造商6,品牌7,车辆类型8,所有权9,
  • 使用性质10,数量11,发动机型号12,排量13,功率14,燃料种类15,车长16,车宽17,车高18,车厢长19,
  • 车厢宽20,车厢高21,轴数22,轴距23,前轮距24,轮胎规格25,轮胎数26,总质量27,整备质量28,核定X质量29,
  • 核定载客30,准牵引质量31,底盘企业32,底盘品牌33,底盘型号34,发动机企业35,车辆名称36,年龄37,性别38

3.输入数据

  • 数据量太大,此处复制不方便,自行百度
    在这里插入图片描述

需求分析👇👇

汽车行业市场分析

1.通过统计乘用车辆(非营运)和商用车辆(营运)的数量和销售额分布

  • CountMap
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * 1.1通过统计乘用车辆(非营运)和商用车辆(其他)的数量和销售额分布
 */
public class CountMap extends Mapper<LongWritable, Text, IntWritable, LongWritable> {
   
   
    private IntWritable intWritable = new IntWritable();
    private LongWritable longWritable = new LongWritable();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
   
   
        String[] split = value.toString().trim().split(",");
        //月1 数量11
        if (split != null && split.length > 11 && split[11] != null && !"".equals(split[11].trim())) {
   
   
            try {
   
   
                intWritable.set(Integer.parseInt(split[1]));
                longWritable.set(Long.parseLong(split[11]));
                context.write(intWritable, longWritable);
            } catch (Exception e) {
   
   
                e.printStackTrace();
            }
        }
    }
}
  • CountCombine
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.util.logging.Logger;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:28
 */
public class CountCombine extends Reducer<Text, LongWritable, Text, LongWritable> {
   
   
    private Logger logger = Logger.getLogger(CountCombine.class.getName());

    private LongWritable res = new LongWritable();

    public CountCombine() {
   
   
        logger.info("CountCombine的构造方法,是单例吗?");//是
    }

    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
   
   
        logger.info("CountCombine的setup执行时机");//开始一次
    }

    @Override
    protected void cleanup(Context context) throws IOException, InterruptedException {
   
   
        logger.info("CountCombine的cleanup执行时机");//结束一次
    }

    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
   
   
        Long sum = new Long(0);
        for (LongWritable val : values) {
   
   
            sum += val.get();
        }
        res.set(sum);
        logger.info("combine合并:" + key.toString() + ":" + res.get());
        context.write(key, res);
    }
}
  • CountReduce
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.logging.Logger;

/**
 * @program: Hadoop_MR
 * @description:
 * @author: 作者
 * @create: 2022-06-21 23:34
 */
public class CountReduce extends Reducer<Text, LongWritable, Text, Text> {
   
   
    private Logger logger = Logger.getLogger(CountCombine.class.getName());

    Map<String, Long> map = new HashMap<>();
    double all = 0;

    public CountReduce() {
   
   
        logger.info("CountReduce的构造方法,是单例吗?");
    }

    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
   
   
        logger.info("CountReduce的setup执行时机");
    }

    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
   
   
        long sum = 0;
        for (LongWritable val : values) {
   
   
            sum += val.get();
        }
        all += sum;
        map.put(key.toString(), sum);
        logger.info("CountReduce的reduce:" + key.toString() + ":" + sum);
    }

    @Override
    protected void cleanup(Context context) throws IOException, InterruptedException {
   
   
        logger
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值