自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 Transformer模型

Transformer模型是由Google的研究团队在2017年提出的,其核心论文《Attention is All You Need》标志着自然语言处理(NLP)领域的一个重要转折点。2018年10月,Google发出一篇论文《BERT:Pre-trainingof Deep Bidirectional Transformers for Language Understanding》, BERT模型的核心即为Transformer。

2025-06-02 17:27:13 716

原创 深度学习视觉领域的应用

MNIST 数据集主要由一些手 写数字的图片和相应的标签组成,图片一共有 10 类,分别对应从 0~9。MNIST数据集是由0〜9手写数字图片和数字标签所组成的,由60000个训练样本和10000个测试样 本组成,每个样本都是一张28 * 28像素的灰度手写数字图片。Fashion-MNIST数据集:FashionMNIST 是一个替代 MNIST 手写数字集 的图像数据集。它是由 Zalando旗下的研究部门提供,涵盖了来自 10种类别的 共 7万个不同商品的正面图片。

2025-05-21 21:23:19 943

原创 零基础也能理解的卷积神经网络(CNN)指南:手把手玩转图像识别

简单来说:CNN 是专门用来处理图片的神经网络结构。它可以自动提取图像的特征,就像人类看到一张猫的照片,能第一眼识别出猫耳朵、胡须、眼睛。传统方法是:我们手动告诉程序“耳朵是什么样”,CNN做的是:自己学会“耳朵长什么样”。官方一点的定义是:卷积神经网络(CNN)是一类​​自带特征提取能力​​的深度学习模型,它的核心思想源自生物视觉系统。想象一下,当你看到一只猫时,眼睛会先识别边缘、纹理,再组合成整体——这正是CNN的工作方式!通过​​卷积核滑动扫描​​(像放大镜观察细节)和​​参数共享​。

2025-05-07 16:42:12 432

原创 Linux系统(ububtu20.04)外接显示器无法显示

博主电脑是联想拯救者Y9000P2024款,安装的Linux系统是ububtu20.04。在外接显示器时只有笔记本电脑能用,通过以下方法解决。

2025-05-04 19:02:17 496

原创 线性分类与感知机:从原理走向实践

​​核心价值​​:感知机奠定了神经网络的基础,理解其工作原理对学习深度学习至关重要​​工程实践​​:数据需标准化以加速收敛学习率需通过网格搜索调优监控训练过程中的准确率变化​​现代应用​​:简单二分类场景(如垃圾邮件过滤)神经网络的基础组件# 可视化决策边界(以二维特征为例)plt.show()# 使用前两个特征训练。

2025-04-28 11:12:29 741

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除