连号区间数
Description
小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
Input
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
Output
输出一个整数,表示不同连号区间的数目。
Sample Input 1
4 3 2 4 1
Sample Output 1
7
思路:最大值 - 最小值 == j - i 个数(总数为j-i+1)
AC代码:
#include <iostream>
using namespace std;
const int N = 10010;
int main(){
int arr[N];
int n,sum = 0;
cin >> n;
for(int i = 0; i < n; i++)cin >> arr[i];
for(int i = 0; i < n; i++){
int max_num = -N,min_num = N,j;
for(j = i; j < n; j++){
max_num = max(max_num, arr[j]);
min_num = min(min_num, arr[j]);
if(max_num - min_num == j - i) sum++;
}
}
cout << sum;
return 0;
}