遗传算法介绍并附上Matlab代码 - 知乎 (zhihu.com)
https://zhuanlan.zhihu.com/p/417444795本文基于以上博主提供的遗传算法Matlab代码进行优化和改良
一、基本原理
1、Rastrigin函数:
Rastrigin函数是一个用于测试优化算法性能的基准函数,是1964年由Rastrigin提出的。该函数的公式表达式为:
f(x) = A * d + ∑(x^2 - A*cos(2π * x))
其中,x是一个d维向量,A是一个常数,通常被设为10。该函数的最优解为f(x)=0,当且仅当x的每一个元素都等于0时。 Rastrigin函数通常被用于测试各种优化算法的性能,因为它具有很强的多峰性和高维特性,能够检验算法在高维空间中的收敛速度和准确性。
2、遗传算法
遗传算法(Genetic Algorithm,GA)是一种基于自然进化原理的优化算法,经常用于解决复杂问题的优化和搜索。遗传算法的优势在于可以解决非线性连续优化问题、多模态优化问题和高维优化问题。遗传算法可以通过不断地演化与优胜劣汰的过程,产生最适合问题的解决方案。
在遗传算法的演化过程中,通过模拟自然界中的进化过程,不断产生下一代种群,并从中筛选出适应性更强的个体,以此不断迭代,从而找到问题的最优解或者接近最优解。在这个迭代的过程中,遗传算法首先通过随机产生的初始种群,然后通过适应度函数的评价来评价个体的适应度,按照某种规则进行繁殖、交叉、变异等操作,产生新的个体,并且按照适应度的值对个体进行筛选、选择和淘汰,得到下一代种群。这样不断地迭代下去,直到种群逐渐收敛于最优解。
GA的基本操作包括:
1. 初始化种群:随机生成初始的种群个体,每个个体包含若干个基因,通常使用二进制码或实数编码等方式表示。
2. 适应度评价:根据问题所需要优化的指标对每个个体进行评价,通常使用目标函数的值来衡量个体的适应度。
3. 选择:按照适应度大小来对种群个体进化的机会进行选择,轮盘赌算法、锦标赛选择、竞争选择等是常用的选择方法。
4. 交叉:从选择的个体中随机选取一对个体,以一定的概率对其基因进行混合和交换,形成新的个体。
5. 变异:对新个体的某些基因进行突变,引入新的变量或改变旧的变量,以增加个体的多样性。
6. 判断是否终止进化:当达到限定的进化代数或解已接近最优解时,进化过程应终止。
7. 生成最优解:在所有进化中得到最优适应度的个体就是最优解。
通过上述操作,GA能自动寻找最优解,适用于广泛领域的问题求解,例如在工程中进行参数寻优。
二、方案和结果
参考代码所求解问题只有一个自变量,现为求解Rastrigin函数的最小值问题(两个自变量),在原来的基础上增加一个种群,两个大小一样的种群独自进行交叉变异(互不影响),然后根据两个种群一起算出的适应度对两个种群分别进行筛选,多次调试运行发现出现的最优解为0,如表1:
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() |
三、优缺点分析
该遗传算法的确可以计算一些比较复杂的最优问题,减少计算量,但也只能尽量接近最优,无法保证一定是最优解,而且经常会出现过早收敛,在迭代至10代左右基本就锁定了一个区间,容易陷入局部最优,经过增加迭代次数发现该问题仍然存在,运行10次有将近7次会陷入局部最优解,取其中一个图形页面展示如下:
![]() | ![]() |
四、改进
为解为解决局部最优的问题,尝试将排序方法由比例法改成线性排序法,增加如下代码,如图:
但局部最优的问题仍然没得到解决,后决定采取锦标赛选择的方法选择个体,发现结果得到改善,每次迭代基本可以正确锁定最优解区间,如表2:
![]() | ![]() |
![]() |
五、总结与体会
在本次仿真中通过尝试不同的方法来评估遗传算法的实用性。对于遗传算法的理解和应用,需要结合实际问题和数据,综合考虑其适用性和精度。虽然遗传算法不能完全解决所有问题,但对于那些精度要求不高的问题,遗传算法提供了一种高效而且易于实现的解决方案,大大减少了计算量和成本。从这个角度看,遗传算法是机器学习领域中非常有用的工具。然而,在实际应用中,需要结合具体问题和数据,综合考虑其适用范围和效果。通过进一步了解和掌握其他优化算法的原理和应用,可以更好地改进和优化现有的遗传算法,提高其精度和实用性。
六、代码
main.m
function main()
clear;
clc;
close all;
%种群大小
popsize_x1=100;
popsize_x2=100;
%二进制编码长度
chromlength=10;
%交叉概率
pc = 0.6;
%变异概率
pm = 0.001;
%初始种群
pop_x1 = initpop(popsize_x1,chromlength);
pop_x2 = initpop(popsize_x2,chromlength);
objvalue= cal_objvalue(pop_x1,pop_x2);%计算适应度值
fitvalue = objvalue;
for i = 1:100
%选择操作
newpop_x1 = selection(pop_x1,fitvalue);
newpop_x2 = selection(pop_x2,fitvalue);
%交叉操作
newpop_x1 = crossover(newpop_x1,pc);
newpop_x2 = crossover(newpop_x2,pc);
%变异操作
newpop_x1 = mutation(newpop_x1,pm);
newpop_x2 = mutation(newpop_x2,pm);
%更新种群
pop_x1 = newpop_x1;
pop_x2 = newpop_x2;
%计算适应度值(函数值)
objvalue = cal_objvalue(pop_x1,pop_x2);
fitvalue = objvalue;
%寻找最优解
[bestindividual_x1,bestindividual_x2,bestfit] = best(pop_x1,pop_x2,fitvalue);
best_x1 = binary2decimal(bestindividual_x1);%最优解x1
best_x2 = binary2decimal(bestindividual_x2);%最优解x2
x1_x1 = binary2decimal(newpop_x1);%二进制转十进制
x1_x2 = binary2decimal(newpop_x2);%二进制转十进制
if mod(i,10) == 0
figure;
[x1,x2] = meshgrid(-5:0.01:5);
z = 20 + x1.^2 + x2.^2 - 10*(cos(2*pi*x1)+cos(2*pi*x2));
contourf(x1,x2,z,20);
hold on;
plot(x1_x1,x1_x2,'r*');
title(['iteration times n=' num2str(i)]);
%num2str把数值转换成字符串, 转换后可以使用fprintf或disp函数进行输出。
end
end
fprintf('The best x1 is --->>%5.2f\n',best_x1);
fprintf('The best x2 is --->>%5.2f\n',best_x2);
fprintf('The best Y is --->>%5.2f\n',bestfit);
best.m
%求最优适应度函数
%输入变量:pop:种群,fitvalue:种群适应度
%输出变量:bestindividual:最佳个体,bestfit:最佳适应度值
function [bestindividual_x1,bestindividual_x2,bestfit] = best(pop_x1,pop_x2,fitvalue)
[px,~] = size(pop_x1);
bestindividual_x1 = pop_x1(1,:);
bestindividual_x2 = pop_x2(1,:);
bestfit = fitvalue(1);
for i = 2:px
if fitvalue(i)>bestfit
bestindividual_x1 = pop_x1(i,:);
bestindividual_x2 = pop_x2(i,:);
bestfit = fitvalue(i);
end
end
bestfit = 1/bestfit;
binary2decimal.m
%二进制转化成十进制函数
%输入变量:
%二进制种群
%输出变量
%十进制数值
function pop2 = binary2decimal(pop)
[~,py]=size(pop);
for i = 1:py
pop1(:,i) = 2.^(py-i).*pop(:,i);
end
%sum(.,2)对行求和,得到列向量
temp = sum(pop1,2);
pop2 = temp*10/1023-5;
cal_objvalue.m
%计算函数目标值
%输入变量:二进制数值
%输出变量:目标函数值
function [objvalue] = cal_objvalue(pop_x1,pop_x2)
x1 = binary2decimal(pop_x1);
x2 = binary2decimal(pop_x2);
%转化二进制数为x变量的变化域范围的数值
objvalue = 20 + x1.^2 + x2.^2 - 10*(cos(2*pi*x1)+cos(2*pi*x2));
objvalue = 1./objvalue;
crossver.m
%交叉变换
%输入变量:pop:二进制的父代种群数,pc:交叉的概率
%输出变量:newpop:交叉后的种群数
function [newpop] = crossover(pop,pc)
[px,py] = size(pop);
newpop = ones(size(pop));
for i = 1:2:px-1
if(rand<pc)
cpoint = round(rand*py); %round取整函数
%下面两行代码意思是:i行的1:cpoint位和i+1行的cpoint+1:py位进行交换
newpop(i,:) = [pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:) = [pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:) = pop(i,:);
newpop(i+1,:) = pop(i+1,:);
end
end
initpop.m
%初始化种群大小
%输入变量:
%popsize:种群大小
%chromlength:染色体长度-->>转化的二进制长度
%输出变量:
%pop:种群
function pop=initpop(popsize,chromlength)
pop = round(rand(popsize,chromlength));
%rand(3,4)生成3行4列的0-1之间的随机数
% rand(3,4)
%
% ans =
%
% 0.8147 0.9134 0.2785 0.9649
% 0.9058 0.6324 0.5469 0.1576
% 0.1270 0.0975 0.9575 0.9706
%round就是四舍五入
% round(rand(3,4))=
% 1 1 0 1
% 1 1 1 0
% 0 0 1 1
%所以返回的种群就是每行是一个个体,列数是染色体长度
mutation.m
%关于编译
%函数说明
%输入变量:pop:二进制种群,pm:变异概率
%输出变量:newpop变异以后的种群
function [newpop] = mutation(pop,pm)
[px,py] = size(pop);
newpop = ones(size(pop));
for i = 1:px
if(rand<pm)
mpoint = round(rand*py);
if mpoint <= 0
mpoint = 1;
end
newpop(i,:) = pop(i,:);%为什么要专门开辟一个newpop,直接改原来的pop不行吗
if newpop(i,mpoint) == 0
newpop(i,mpoint) = 1;
elseif newpop(i,mpoint) == 1
newpop(i,mpoint) = 0;
end
else
newpop(i,:) = pop(i,:);
end
end
selection.m
%如何选择新的个体
%输入变量:pop二进制种群,fitvalue:适应度值
%输出变量:newpop选择以后的二进制种群
function [newpop] = selection(pop,fitvalue)
%构造轮盘
[px,~] = size(pop);
%线性排序增加的代码
% fitvalue_all = zeros(px,2);
% fitvalue_all(:,2) = fitvalue;
% for i = 1:px
% fitvalue_all(i,1) = i;
% end
% fitvalue_all = sortrows(fitvalue_all,2);
% for i = 1:px
% fitvalue_all(i,2) = i;
% end
% fitvalue_all = sortrows(fitvalue_all,1);
% fitvalue = fitvalue_all(:,2);
% %原代码
% % totalfit = sum(fitvalue);
% % p_fitvalue = fitvalue/totalfit;
% % p_fitvalue = cumsum(p_fitvalue);%概率求和排序
% % ms = sort(rand(px,1));%从小到大排列
% % fitin = 1;
% % newin = 1;
% %
% % while newin<=px
% % if(ms(newin))<p_fitvalue(fitin)
% % newpop(newin,:)=pop(fitin,:);
% % newin = newin+1;
% % else
% % fitin=fitin+1;
% % end
% % end
%采用锦标赛选择方法的代码:
for i = 1:px
x1 = randi([1 100]);
x2 = randi([1 100]);
if(fitvalue(x1) < fitvalue(x2))
newpop(i,:)=pop(x2,:);
else
newpop(i,:)=pop(x1,:);
end
end
end