自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(0)
  • 收藏
  • 关注

空空如也

平方倍频法分析BPSK、QPSK调制方式在不同SNR下的信号检测情况,通过蒙特卡罗实验进行计算均方根误差,分析预测值与真是之间的差剧

平方倍频法是通过对信号进行平方以及取绝对值来消除相位突变,使得 DSSS 信号经过变换处理后的信号的功率谱集中在二倍载频处,以此实现对直扩信号的载频估计。其原理框图如图1所示,其中为了保证能够检测到信号的存在频带,常使输出滤波器 BPF2 的有效带宽为输入滤波器 BPF1 的两倍。 平方倍频法实现简单,且在信噪比较高情况下性能良好,但在信噪比较低时算法性能急剧下降。由于 DSSS 信号常隐藏在噪声之中,因此为提高算法的抗噪声性能,在倍频算法中引入相关运算处理,倍频后信号再进行相关处理得到的信号不会改变此信号载频信息,因此对分段后信号作相关累积处理将提高信号的输出信噪比,以此提高倍频法的抗噪声能力,其原理框架如图所示。 改进后的倍频图像受噪声影响更小,检测效果更好。 相同点:都是通过对信号进行处理,得到新的频率分量与信号载频之间的关系,进而对载频进行估计。 不同点:在同一条件下,改进的平方倍频法的性能优于平方倍频法,噪声抑制能力有所增强,而循环谱算法性能最佳,但由于循环谱算法的运算量较大,在需要实时性的通信系统中适应性较弱。 1.本次设计的主要任务是在复杂的噪声干扰下,对直扩信号的存在进行判定,然后对相应的特征参数进行有效的估计,为解扩等后续处理提供可靠的条件。 2.以循环谱为分析重点研究了直扩信号的快速检测,并与改进平方倍频法仿真对比,对于信号的存在与否取得了很好的检测效果。

2025-04-15

循环谱法分析BPSK、QPSK调制方式在不同SNR下的信号检测情况,通过蒙特卡罗实验进行计算均方根误差,分析预测值与真是之间的差距

原始信息首先通过与伪随机序列相乘或者异或实现扩频调制,再利用振荡器所产生的载波进行载波调制后通过发射机发射出去,在接收端使用混频器对信号进行降频处理,再利用本地扩频码和载波对信号进行解扩、解调后得到发送端所发送的信息。 扩频系统的扩频运算是通过伪随机码来实现的。理论上,用纯随机序列来扩展信号的频谱是理想的,但是接收端必须复制同一个随机序列,由于随机序列的不可复制性,因此在工程应用中,采用伪随机序列。伪随机序列具有类似于随机噪声的某些统计特性,同时又能重复发生。m序列是最长线性反馈移位寄存器序列(Maximal Length Linear Feedback Shift Register Sequence)的简称。它是由带线性反馈的移位寄存器产生的周期最长的序列。 由于BPSK中,输入0时,输出相位为0,输入1时,输出相位为Π。 将二进制序列,串并转换后将分成两路速率减半的二进制序列得到基带波形I(t),Q(t)。这两路码元在时间上是对齐的,称这两路信号分别是同相支路和正交支路,后续进行上采样,成型滤波器,最后通过IQ调制实现QPSK信号的波形生成。 1.生成双极性的 15 位 m 序列: 2.生成随机的50位待发送二进制信息序列,并进行扩频: 3.对扩频前后的待发送序列进行 BPSK 调制,并观察时域波形: 4.计算并观察扩频前后 BPSK 调制信号的频谱: 循环谱法利用循环平稳信号与随机信号谱相关特性之间的不同,实现对DSSS 信号的检测,而这些算法在检测信号的过程中也可以将载频参数提取出来。设x(t)是一个零均值的非平稳信号,其时变自相关函数定义为: Rr(t,T)= E{x(t)x*(t-T)}若R(t,T)是周期为T的周期函数,统计特性具有二阶周期性,则可用傅里叶级数将其展开为:

2025-04-15

西电研究生MIMO期末论文

内容概要:本文探讨了大规模多输入多输出(MIMO)技术在下一代无线通信系统中的应用及其重要性。随着5G及更高网络的发展,大规模MIMO通过在基站安装大量天线,显著提高了频谱效率和吞吐量,解决了频谱资源紧张的问题。文章详细介绍了大规模MIMO的工作原理、优势及其与5G技术结合的具体应用场景,如非正交多址接入(NOMA)、异构网络、射频能量收集、毫米波通信和设备到设备(D2D)通信。此外,文中还讨论了MIMO天线设计面临的挑战,包括天线间的耦合、便携式设备的小型化、极化分集和频带覆盖率等问题。 适合人群:通信工程领域的研究人员、工程师以及对无线通信技术感兴趣的高校学生。 使用场景及目标:①了解大规模MIMO技术的核心原理及其在5G及未来6G网络中的应用;②掌握大规模MIMO与NOMA、毫米波等技术结合后的具体实现方式;③研究MIMO天线设计中的关键技术难题及解决方案。 其他说明:本文不仅涵盖了大规模MIMO技术的基础理论,还深入探讨了其在实际应用中的挑战和未来发展方向,为相关领域的研究提供了宝贵的参考资料。

2025-04-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除