蓝桥杯 c++A试题 E: 路径

考察:图论

可用算法:floyd算法,gcd的求法,最小公倍数求法

1.gcd:背下来嘛,辗转相除

int gcd(int a, int b) {
    return b == 0 ? a : gcd(b, a % b);
}

2.最小公倍数

int bei(int a, int b) {
    return a * b / gcd(a, b);
}

3.floyd算法

struct graph {
    int sta;
    int en;
    int matx[2022][2022];
};

void floyd(graph g, int c[2021][2021], int m[2021][2021]) {
    for (int i = 0; i < 2021; i++) {
        for (int j = 0; j < 2021; j++) {
            c[i][j] = g.matx[i+1][j+1];
            m[i][j] = j+1;//先让中间节点就是后面那个
        }
    }
    for (int k = 0; k <2021; k++) {
        for (int i = 0; i < 2021; i++) {
            for (int j = 0; j < 2021; j++) {
                if (c[i][j] > c[i][k] + c[j][k]) {
                    c[i][j] = c[i][k] + c[j][k];
                    m[i][j] = m[i][k];//重新赋值中间节点
                }
            }
        }


    }


}

其中最大数要取好,不够大答案就错了,maxx=0x3f3f3f3f

整体代码:

 

​
#include<iostream>
using namespace std;
#include<algorithm>
#include<math.h>
//路径
//最大公因数
//写对了真开心 2022.3.27 19点44分
int gcd(int a, int b) {
	return b == 0 ? a : gcd(b, a % b);
}

int bei(int a, int b) {
	return a * b / gcd(a, b);
}
int sizes = 2022;
const int maxx=0x3f3f3f3f;
int mat[2022][2022];
//初始化,处理矩阵
void start(int mat[2022][2022]) {
	
	for (int i = 0; i < sizes; i++) {
		for (int j = 0; j <sizes; j++) {

			if (i == 0 || j == 0) {
				mat[i][j] =0;
			}
			else {

				if (abs(j - i) > 21) {
					mat[i][j] = maxx;
					

				}
				else {
					mat[i][j]= bei(j, i);
				}

			}

			
		}
	}
}
int cost[2021][2021];
int mid[2021][2021];

struct graph {
	int sta;
	int en;
	int matx[2022][2022];
};

void floyd(graph g, int c[2021][2021], int m[2021][2021]) {
	for (int i = 0; i < 2021; i++) {
		for (int j = 0; j < 2021; j++) {
			c[i][j] = g.matx[i+1][j+1];
			m[i][j] = j+1;
		}
	}
	for (int k = 0; k <2021; k++) {
		for (int i = 0; i < 2021; i++) {
			for (int j = 0; j < 2021; j++) {
				if (c[i][j] > c[i][k] + c[j][k]) {
					c[i][j] = c[i][k] + c[j][k];
					m[i][j] = m[i][k];
				}
			}
		}


	}


}

int main() {

	graph gra;
	start(gra.matx);
	floyd(gra, cost, mid);
	cout << cost[0][2020];
	




}


​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值