1. 背景与挑战
复杂的时间依赖性:电力负荷受多种因素影响,如季节变化、节假日效应、天气条件等,具有非线性和长时间依赖性,对于这些负责因素,传统方法很难有效全面考虑。
数据维度高:我们需要处理多种输入数据,包括历史负荷、天气预报、社会经济指标等。
数据类型不统一:输入数据包括时间序列,空间坐标和其他数据类型,需要考虑多种处理方式与归一化。
2. Transformer模型的优势
自注意力机制可以捕捉序列中远距离的依赖关系,适合处理具有长时间跨度的负荷数据。且相比于RNN,Transformer可以更高效地进行训练和推理,适合大规模数据处理。Transformer能够同时处理多种输入特征,融合不同来源的数据。
注意力机制通过自注意力和多头注意力等技术,能够有效地捕捉序列中远距离的依赖关系。这使得Transformer模型在处理具有长时间跨度的电力负荷数据时,能够充分利用历史信息,捕捉复杂的周期性和趋势性模式。相比传统的序列模型,Transformer在处理长序列时具有计算效率高、捕捉全局依赖强、模型灵活性高等优势。
3. 模型构建步骤
-
数据预处理:
处理缺失值和异常值,确保数据质量。提取有用的时间特征(如小时、星期、节假日标识)、天气特征等。 -
模型设计:
- 输入嵌入:将数值特征转换为高维向量,可能需要位置编码来保留时间序列信息。
- Transformer编码器:使用多层自注意力机制提取序列特征。
- 输出层:通过全连接层或其他回归层输出预测值。
-
训练与优化:
- 损失函数:通常使用均方误差(MSE)或平均绝对误差(MAE)。
- 优化算法:使用Adam、AdamW优化器,调整学习率和正则化参数。
-
模型评估:
- 交叉验证:确保模型的泛化能力。
- 评价指标:使用MAE、MAPE指标评估预测性能。