利用Matlab实现Mann-Kendall(MK)突变检验函数

该博客介绍了如何在Matlab中利用Mann-Kendall(MK)突变检验方法检测时间序列的突变点。MK检验是一种非参数方法,适用于判断数据序列是否存在上升或下降趋势,并确定突变的时间区域。博客提供了详细的计算步骤和Matlab代码实现,包括正序和逆序序列的处理,以及结果的可视化。通过绘制UF和UB统计量曲线,可以观察和分析序列趋势及突变点。
摘要由CSDN通过智能技术生成

利用Matlab实现Mann-Kendall(MK)突变检验函数

一、MK突变检验

        1、一般取显著性水平α=0.05,那么临界值U0.05= ±1.96 。将UFkUBk两个统计量序列曲线和±1.96 两条直线均绘在一张图上。

         2、UFkUBk的值大于0,则表明序列呈上升趋势,小于则表明呈下降趋势。 当它们超过临界直线时,表明上升或下降趋势显著,超过临界线的范围确定为出现突变的时间区域。

        3、如果UFkUBk两条曲线出现交点,且交点在临界线之间,那么交点对应的时刻便是突变开始的时间

         4、Mann-Kendall突变检测方法的简要计算步骤:

(1)计算顺序时间序列的秩序列,按照上述公式计算UFx;

(2)计算逆序时间序列的秩序列,按照上述公式计算UBx;

(3)给定显著性水平,如a=0.05,对于临界值为U0.05 = ±1.96,将UFx与UB,两个二个统计量序列曲线与U0.05 =±1.96两条直线绘制在一个平面直角坐标α=0.10对应U0.10 = ±1.28,1=0.01对应U0.01= ±2.32。

(4)分析绘制出的UFR与UB,曲线图,若UF,或UBx的值大于0,则表明序列呈上升趋势,小于0则呈下降趋势。当它们超出临界直线时,表明上升或下降趋势显著。超过临界线的范围确定为出现突变的时间区域。若UFx与UB,两条曲线出现交叉点,且交叉点在临界线之间,它们交叉点对应的时刻便是突变开始的数据。

二、在Matlab上的两种实现方法

代码一

data1=load('D:\1\2.txt');

x=data1;

year=1987:2021; 

%% 突变检验

for i=2:length(x)

    r(i)=0;

    for j=1:i

        if x(i)>x(j)

           r(i)=r(i)+1;

        end

    end

end

for k=2:length(x)

    S(k)=sum(r(1:k));

    E(k)=k*(k-1)/4;

    Var(k)=k*(k-1)*(2*k+5)/72;

    UF(k)=(S(k)-E(k))./sqrt(Var(k));

end

x1=x(end:-1:1);

for i=2:length(x)

    r1(i)=0;

    for j=1:i

        if x1(i)>x1(j)

           r1(i)=r1(i)+1;

        end

    end

end

for k=2:length(x)

    S1(k)=sum(r1(1:k));

    E1(k)=k*(k-1)/4;

    Var1(k)=k*(k-1)*(2*k+5)/72;

   UB(k)=-(S1(k)-E1(k))./sqrt(Var1(k));

end

%% 绘图

figure(1)

plot(year,data1)

xlabel('Year','FontSize',12);

ylabel('Sunspot','FontSize',12);

set(gca,'FontSize',12);

figure(2)

plot(year,UF,'r-','MarkerSize',2,'linewidth',1.5);

hold on

plot(year,UB(end:-1:1),'b-','MarkerSize',2,'linewidth',1.5);

plot(year,1.96*ones(length(x),1),'k--','linewidth',1);

plot(year,-1.96*ones(length(x),1),'k--','linewidth',1);

xlabel('Year','FontSize',12);

ylabel('UF&UB','FontSize',12);

set(gca,'FontSize',12);

legend('UF','UB');

代码二:


[filename,pathname] = uigetfile('*.txt','请选择打开的数据文件');
file = [pathname, filename];
data = importdata(file);
x=data(:,1);%时间序列
y=data(:,2);%数据列

N=length(y);

n=length(y);

% 正序列计算---------------------------------

% 定义累计量序列Sk,长度=y,初始值=0

Sk=zeros(size(y));

% 定义统计量UFk,长度=y,初始值=0

UFk=zeros(size(y));

% 定义Sk序列元素s

s = 0;

% i从2开始,因为根据统计量UFk公式,i=1时,Sk(1)、E(1)、Var(1)均为0

% 此时UFk无意义,因此公式中,令UFk(1)=0

for i=2:n

for j=1:i

   if y(i)>y(j)

    s=s+1;

  else

s=s+0;

  end

end

Sk(i)=s;

E=i*(i-1)/4; % Sk(i)的均值

Var=i*(i-1)*(2*i+5)/72; % Sk(i)的方差

UFk(i)=(Sk(i)-E)/sqrt(Var);

end

% ------------------------------正序列计算end

% 逆序列计算---------------------------------

% 构造逆序列y2,长度=y,初始值=0

y2=zeros(size(y));

% 定义逆序累计量序列Sk2,长度=y,初始值=0

Sk2=zeros(size(y));

% 定义逆序统计量UBk,长度=y,初始值=0

UBk=zeros(size(y));

% s归0

s=0;

% 按时间序列逆转样本y

% 也可以使用y2=flipud(y);或者y2=flipdim(y,1);

for i=1:n

y2(i)=y(n-i+1);

end

% i从2开始,因为根据统计量UBk公式,i=1时,Sk2(1)、E(1)、Var(1)均为0

% 此时UBk无意义,因此公式中,令UBk(1)=0

for i=2:n

for j=1:i

if y2(i)>y2(j)

s=s+1;

else

s=s+0;

end

end

Sk2(i)=s;

E=i*(i-1)/4; % Sk2(i)的均值

Var=i*(i-1)*(2*i+5)/72; % Sk2(i)的方差

% 由于对逆序序列的累计量Sk2的构建中,依然用的是累加法,即后者大于前者时s加1,

% 则s的大小表征了一种上升的趋势的大小,而序列逆序以后,应当表现出与原序列相反

% 的趋势表现,因此,用累加法统计Sk2序列,统计量公式(S(i)-E(i))/sqrt(Var(i))

% 也不应改变,但统计量UBk应取相反数以表征正确的逆序序列的趋势

UBk(i)=0-(Sk2(i)-E)/sqrt(Var);

end

% ------------------------------逆序列计算end

% 此时上一步的到UBk表现的是逆序列在逆序时间上的趋势统计量

% 与UFk做图寻找突变点时,2条曲线应具有同样的时间轴,因此

% 再按时间序列逆转结果统计量UBk,得到时间正序的UBk2,做图用

UBk2=zeros(size(y));

% 也可以使用UBk2=flipud(UBk);或者UBk2=flipdim(UBk,1);

for i=1:n

UBk2(i)=UBk(n-i+1);

end

% 做突变检测图时,使用UFk和UBk2

% 写入目标xls文件:f:\test2.xls

% 目标表单:Sheet1

% 目标区域:UFk从A1开始,UBk2从B1开始

xlswrite('D:\12.xls',UFk,'Sheet1','A1');

xlswrite('D:\12.xls',UBk2,'Sheet1','B1');

figure(3)%画图

plot(x,UFk,'r-','linewidth',1.5);

hold on

plot(x,UBk2,'b-.','linewidth',1.5);

plot(x,1.96*ones(N,1),':','linewidth',1);

axis([min(x),max(x),-5,5]);

legend('UF统计量','UB统计量','0.05显著水平');

xlabel('t (year)','FontName','TimesNewRoman','FontSize',12);

ylabel('统计量','FontName','TimesNewRoman','Fontsize',12);

%grid on

hold on

plot(x,0*ones(N,1),'-.','linewidth',1);

plot(x,1.96*ones(N,1),':','linewidth',1);

plot(x,-1.96*ones(N,1),':','linewidth',1);

三、参考文献:

Mann-Kendall突变检验原理及实现

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

日益崛起的小羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值