利用Matlab实现Mann-Kendall(MK)突变检验函数
一、MK突变检验
1、一般取显著性水平α=0.05,那么临界值U0.05= ±1.96 。将UFk和UBk两个统计量序列曲线和±1.96 两条直线均绘在一张图上。
2、若UFk和UBk的值大于0,则表明序列呈上升趋势,小于0 则表明呈下降趋势。 当它们超过临界直线时,表明上升或下降趋势显著,超过临界线的范围确定为出现突变的时间区域。
3、如果UFk和UBk两条曲线出现交点,且交点在临界线之间,那么交点对应的时刻便是突变开始的时间。
4、Mann-Kendall突变检测方法的简要计算步骤:
(1)计算顺序时间序列的秩序列,按照上述公式计算UFx;
(2)计算逆序时间序列的秩序列,按照上述公式计算UBx;
(3)给定显著性水平,如a=0.05,对于临界值为U0.05 = ±1.96,将UFx与UB,两个二个统计量序列曲线与U0.05 =±1.96两条直线绘制在一个平面直角坐标α=0.10对应U0.10 = ±1.28,1=0.01对应U0.01= ±2.32。
(4)分析绘制出的UFR与UB,曲线图,若UF,或UBx的值大于0,则表明序列呈上升趋势,小于0则呈下降趋势。当它们超出临界直线时,表明上升或下降趋势显著。超过临界线的范围确定为出现突变的时间区域。若UFx与UB,两条曲线出现交叉点,且交叉点在临界线之间,它们交叉点对应的时刻便是突变开始的数据。
二、在Matlab上的两种实现方法
代码一
data1=load('D:\1\2.txt');
x=data1;
year=1987:2021;
%% 突变检验
for i=2:length(x)
r(i)=0;
for j=1:i
if x(i)>x(j)
r(i)=r(i)+1;
end
end
end
for k=2:length(x)
S(k)=sum(r(1:k));
E(k)=k*(k-1)/4;
Var(k)=k*(k-1)*(2*k+5)/72;
UF(k)=(S(k)-E(k))./sqrt(Var(k));
end
x1=x(end:-1:1);
for i=2:length(x)
r1(i)=0;
for j=1:i
if x1(i)>x1(j)
r1(i)=r1(i)+1;
end
end
end
for k=2:length(x)
S1(k)=sum(r1(1:k));
E1(k)=k*(k-1)/4;
Var1(k)=k*(k-1)*(2*k+5)/72;
UB(k)=-(S1(k)-E1(k))./sqrt(Var1(k));
end
%% 绘图
figure(1)
plot(year,data1)
xlabel('Year','FontSize',12);
ylabel('Sunspot','FontSize',12);
set(gca,'FontSize',12);
figure(2)
plot(year,UF,'r-','MarkerSize',2,'linewidth',1.5);
hold on
plot(year,UB(end:-1:1),'b-','MarkerSize',2,'linewidth',1.5);
plot(year,1.96*ones(length(x),1),'k--','linewidth',1);
plot(year,-1.96*ones(length(x),1),'k--','linewidth',1);
xlabel('Year','FontSize',12);
ylabel('UF&UB','FontSize',12);
set(gca,'FontSize',12);
legend('UF','UB');
代码二:
[filename,pathname] = uigetfile('*.txt','请选择打开的数据文件');
file = [pathname, filename];
data = importdata(file);
x=data(:,1);%时间序列
y=data(:,2);%数据列
N=length(y);
n=length(y);
% 正序列计算---------------------------------
% 定义累计量序列Sk,长度=y,初始值=0
Sk=zeros(size(y));
% 定义统计量UFk,长度=y,初始值=0
UFk=zeros(size(y));
% 定义Sk序列元素s
s = 0;
% i从2开始,因为根据统计量UFk公式,i=1时,Sk(1)、E(1)、Var(1)均为0
% 此时UFk无意义,因此公式中,令UFk(1)=0
for i=2:n
for j=1:i
if y(i)>y(j)
s=s+1;
else
s=s+0;
end
end
Sk(i)=s;
E=i*(i-1)/4; % Sk(i)的均值
Var=i*(i-1)*(2*i+5)/72; % Sk(i)的方差
UFk(i)=(Sk(i)-E)/sqrt(Var);
end
% ------------------------------正序列计算end
% 逆序列计算---------------------------------
% 构造逆序列y2,长度=y,初始值=0
y2=zeros(size(y));
% 定义逆序累计量序列Sk2,长度=y,初始值=0
Sk2=zeros(size(y));
% 定义逆序统计量UBk,长度=y,初始值=0
UBk=zeros(size(y));
% s归0
s=0;
% 按时间序列逆转样本y
% 也可以使用y2=flipud(y);或者y2=flipdim(y,1);
for i=1:n
y2(i)=y(n-i+1);
end
% i从2开始,因为根据统计量UBk公式,i=1时,Sk2(1)、E(1)、Var(1)均为0
% 此时UBk无意义,因此公式中,令UBk(1)=0
for i=2:n
for j=1:i
if y2(i)>y2(j)
s=s+1;
else
s=s+0;
end
end
Sk2(i)=s;
E=i*(i-1)/4; % Sk2(i)的均值
Var=i*(i-1)*(2*i+5)/72; % Sk2(i)的方差
% 由于对逆序序列的累计量Sk2的构建中,依然用的是累加法,即后者大于前者时s加1,
% 则s的大小表征了一种上升的趋势的大小,而序列逆序以后,应当表现出与原序列相反
% 的趋势表现,因此,用累加法统计Sk2序列,统计量公式(S(i)-E(i))/sqrt(Var(i))
% 也不应改变,但统计量UBk应取相反数以表征正确的逆序序列的趋势
UBk(i)=0-(Sk2(i)-E)/sqrt(Var);
end
% ------------------------------逆序列计算end
% 此时上一步的到UBk表现的是逆序列在逆序时间上的趋势统计量
% 与UFk做图寻找突变点时,2条曲线应具有同样的时间轴,因此
% 再按时间序列逆转结果统计量UBk,得到时间正序的UBk2,做图用
UBk2=zeros(size(y));
% 也可以使用UBk2=flipud(UBk);或者UBk2=flipdim(UBk,1);
for i=1:n
UBk2(i)=UBk(n-i+1);
end
% 做突变检测图时,使用UFk和UBk2
% 写入目标xls文件:f:\test2.xls
% 目标表单:Sheet1
% 目标区域:UFk从A1开始,UBk2从B1开始
xlswrite('D:\12.xls',UFk,'Sheet1','A1');
xlswrite('D:\12.xls',UBk2,'Sheet1','B1');
figure(3)%画图
plot(x,UFk,'r-','linewidth',1.5);
hold on
plot(x,UBk2,'b-.','linewidth',1.5);
plot(x,1.96*ones(N,1),':','linewidth',1);
axis([min(x),max(x),-5,5]);
legend('UF统计量','UB统计量','0.05显著水平');
xlabel('t (year)','FontName','TimesNewRoman','FontSize',12);
ylabel('统计量','FontName','TimesNewRoman','Fontsize',12);
%grid on
hold on
plot(x,0*ones(N,1),'-.','linewidth',1);
plot(x,1.96*ones(N,1),':','linewidth',1);
plot(x,-1.96*ones(N,1),':','linewidth',1);